Thinking

Java

Fourth Edition

Bruce Eckel

President, MindView, Inc.

Comments from readers:

Thinking In Java should be read cover to cover by every Java programmer, then kept close at
hand for frequent reference. The exercises are challenging, and the chapter on Collections is
superb! Not only did this book help me to pass the Sun Certified Java Programmer exam; it’s
also the first book I turn to whenever I have a Java question. Jim Pleger, Loudoun
County (Virginia) Government

Much better than any other Java book I've seen. Make that “by an order of magnitude”... very
complete, with excellent right-to-the-point examples and intelligent, not dumbed-down,
explanations ... In contrast to many other Java books I found it to be unusually mature,
consistent, intellectually honest, well-written and precise. IMHO, an ideal book for studying
Java. Anatoly Vorobey, Technion University, Haifa, Israel

One of the absolutely best programming tutorials I've seen for any language. Joakim
Ziegler, FIX sysop

Thank you for your wonderful, wonderful book on Java. Dr. Gavin Pillay, Registrar, King
Edward VIII Hospital, South Africa

Thank you again for your awesome book. I was really floundering (being a non-C
programmer), but your book has brought me up to speed as fast as I could read it. It’s really
cool to be able to understand the underlying principles and concepts from the start, rather
than having to try to build that conceptual model through trial and error. Hopefully I will be
able to attend your seminar in the not-too-distant future. Randall R. Hawley,
Automation Technician, Eli Lilly & Co.

The best computer book writing I have seen. Tom Holland

This is one of the best books I've read about a programming language... The best book ever
written on Java. Ravindra Pai, Oracle Corporation, SUNOS product line

This is the best book on Java that I have ever found! You have done a great job. Your depth is
amazing. I will be purchasing the book when it is published. I have been learning Java since
October 96. I have read a few books, and consider yours a “MUST READ.” These past few
months we have been focused on a product written entirely in Java. Your book has helped
solidify topics I was shaky on and has expanded my knowledge base. I have even used some
of your explanations as information in interviewing contractors to help our team. I have
found how much Java knowledge they have by asking them about things I have learned from
reading your book (e.g., the difference between arrays and Vectors). Your book is great!
Steve Wilkinson, Senior Staff Specialist, MCI Telecommunications

Great book. Best book on Java I have seen so far. Jeff Sinclair, Software Engineer,
Kestral Computing

Thank you for Thinking in Java. It’s time someone went beyond mere language description
to a thoughtful, penetrating analytic tutorial that doesn’t kowtow to The Manufacturers. I've
read almost all the others—only yours and Patrick Winston’s have found a place in my heart.
I'm already recommending it to customers. Thanks again. Richard Brooks, Java
Consultant, Sun Professional Services, Dallas

Bruce, your book is wonderful! Your explanations are clear and direct. Through your
fantastic book I have gained a tremendous amount of Java knowledge. The exercises are also
FANTASTIC and do an excellent job reinforcing the ideas explained throughout the chapters.
I look forward to reading more books written by you. Thank you for the tremendous service
that you are providing by writing such great books. My code will be much better after reading

Thinking in Java. I thank you and I'm sure any programmers who will have to maintain my
code are also grateful to you. Yvonne Watkins, Java Artisan, Discover Technologies,
Inc.

Other books cover the WHAT of Java (describing the syntax and the libraries) or the HOW of
Java (practical programming examples). Thinking in Java is the only book I know that
explains the WHY of Java; why it was designed the way it was, why it works the way it does,
why it sometimes doesn’t work, why it’s better than C++, why it’s not. Although it also does a
good job of teaching the what and how of the language, Thinking in Java is definitely the
thinking person’s choice in a Java book. Robert S. Stephenson

Thanks for writing a great book. The more I read it the better I like it. My students like it, too.
Chuck lverson

I just want to commend you for your work on Thinking in Java. It is people like you that
dignify the future of the Internet and I just want to thank you for your effort. It is very much
appreciated. Patrick Barrell, Network Officer Mamco, QAF Mfg. Inc.

I really, really appreciate your enthusiasm and your work. I download every revision of your
online books and am looking into languages and exploring what I would never have dared
(C#, C++, Python, and Ruby, as a side effect). I have at least 15 other Java books (I needed 3
to make both JavaScript and PHP viable!) and subscriptions to Dr. Dobbs, JavaPro, JDJ,
JavaWorld, etc., as a result of my pursuit of Java (and Enterprise Java) and certification but I
still keep your book in higher esteem. It truly is a thinking man’s book. I subscribe to your
newsletter and hope to one day sit down and solve some of the problems you extend for the
solutions guides for you (I'll buy the guides!) in appreciation. But in the meantime, thanks a
lot. Joshua Long, www.starbuxman.com

Most of the Java books out there are fine for a start, and most just have beginning stuff and a
lot of the same examples. Yours is by far the best advanced thinking book I've seen. Please
publish it soon! ... I also bought Thinking in C++ just because I was so impressed with
Thinking in Java. George Laframboise, LightWorx Technology Consulting, Inc.

I wrote to you earlier about my favorable impressions regarding your Thinking in C++ (a
book that stands prominently on my shelf here at work). And today I've been able to delve
into Java with your e-book in my virtual hand, and I must say (in my best Chevy Chase from
Modern Problems), “I like it!” Very informative and explanatory, without reading like a dry
textbook. You cover the most important yet the least covered concepts of Java development:
the whys. Sean Brady

I develop in both Java and C++, and both of your books have been lifesavers for me. If I am
stumped about a particular concept, I know that I can count on your books to a) explain the
thought to me clearly and b) have solid examples that pertain to what I am trying to
accomplish. I have yet to find another author that I continually whole-heartedly recommend
to anyone who is willing to listen. Josh Asbury, A~3 Software Consulting, Cincinnati,
Ohio

Your examples are clear and easy to understand. You took care of many important details of
Java that can’t be found easily in the weak Java documentation. And you don’t waste the
reader’s time with the basic facts a programmer already knows. Kai Engert, Innovative
Software, Germany

I'm a great fan of your Thinking in C++ and have recommended it to associates. As I go
through the electronic version of your Java book, I'm finding that you've retained the same
high level of writing. Thank you! Peter R. Neuwald

VERY well-written Java book...I think you’ve done a GREAT job on it. As the leader of a
Chicagoarea Java special interest group, I've favorably mentioned your book and Web site

several times at our recent meetings. I would like to use Thinking in Java as the basis for a
part of each monthly SIG meeting, in which we review and discuss each chapter in
succession. Mark Ertes

By the way, printed TIJ2 in Russian is still selling great, and remains bestseller. Learning
Java became synonym of reading TIJ2, isn’t that nice? lvan Porty, translator and
publisher of Thinking in Java 2nd Edition in Russian

I really appreciate your work and your book is good. I recommend it here to our users and
Ph.D. students. Hugues Leroy // Irisa-Inria Rennes France, Head of Scientific
Computing and Industrial Tranfert

OK, I've only read about 40 pages of Thinking in Java, but I've already found it to be the
most clearly written and presented programming book I've come across...and I'm a writer,
myself, so I am probably a little critical. I have Thinking in C++ on order and can’t wait to
crack it—I'm fairly new to programming and am hitting learning curves head-on everywhere.
So this is just a quick note to say thanks for your excellent work. I had begun to burn a little
low on enthusiasm from slogging through the mucky, murky prose of most computer books—
even ones that came with glowing recommendations. I feel a whole lot better now. Glenn
Becker, Educational Theatre Association

Thank you for making your wonderful book available. I have found it immensely useful in
finally understanding what I experienced as confusing in Java and C++. Reading your book
has been very satisfying. Felix Bizaoui, Twin Oaks Industries, Louisa, Va.

I must congratulate you on an excellent book. I decided to have a look at Thinking in Java
based on my experience with Thinking in C++, and I was not disappointed. Jaco van der
Merwe, Software Specialist, DataFusion Systems Ltd, Stellenbosch, South Africa

This has to be one of the best Java books I've seen. E.F. Pritchard, Senior Software
Engineer, Cambridge Animation Systems Ltd., United Kingdom

Your book makes all the other Java books I've read or flipped through seem doubly useless
and insulting. Brett Porter, Senior Programmer, Art & Logic

I have been reading your book for a week or two and compared to the books I have read
earlier on Java, your book seems to have given me a great start. I have recommended this
book to a lot of my friends and they have rated it excellent. Please accept my congratulations
for coming out with an excellent book. Rama Krishna Bhupathi, Software Engineer,
TCSI Corporation, San Jose

Just wanted to say what a “brilliant” piece of work your book is. I've been using it as a major
reference for in-house Java work. I find that the table of contents is just right for quickly
locating the section that is required. It’s also nice to see a book that is not just a rehash of the
API nor treats the programmer like a dummy. Grant Sayer, Java Components Group
Leader, Ceedata Systems Pty Ltd, Australia

Wow! A readable, in-depth Java book. There are a lot of poor (and admittedly a couple of
good) Java books out there, but from what I've seen yours is definitely one of the best. John
Root, Web Developer, Department of Social Security, London

I've just started Thinking in Java. I expect it to be very good because I really liked Thinking
in C++ (which I read as an experienced C++ programmer, trying to stay ahead of the curve)
... You are a wonderful author. Kevin K. Lewis, Technologist, ObjectSpace, Inc.

I think it’s a great book. I learned all I know about Java from this book. Thank you for
making it available for free over the Internet. If you wouldn’t have I'd know nothing about

Java at all. But the best thing is that your book isn’t a commercial brochure for Java. It also
shows the bad sides of Java. YOU have done a great job here. Frederik Fix, Belgium

I have been hooked to your books all the time. A couple of years ago, when I wanted to start
with C++, it was C++ Inside & Out which took me around the fascinating world of C++. It
helped me in getting better opportunities in life. Now, in pursuit of more knowledge and
when I wanted to learn Java, I bumped into Thinking in Java—no doubts in my mind as to
whether I need some other book. Just fantastic. It is more like rediscovering myself as I get
along with the book. It is just a month since I started with Java, and heartfelt thanks to you, I
am understanding it better now. Anand Kumar S., Software Engineer,
Computervision, India

Your book stands out as an excellent general introduction. Peter Robinson, University of
Cambridge Computer Laboratory

It’s by far the best material I have come across to help me learn Java and I just want you to
know how lucky I feel to have found it. THANKS! Chuck Peterson, Product Leader,
Internet Product Line, IVIS International

The book is great. It’s the third book on Java I've started and I'm about two-thirds of the way
through it now. I plan to finish this one. I found out about it because it is used in some
internal classes at Lucent Technologies and a friend told me the book was on the Net. Good
work. Jerry Nowlin, MTS, Lucent Technologies

Of the six or so Java books I've accumulated to date, your Thinking in Java is by far the best
and clearest. Michael Van Waas, Ph.D., President, TMR Associates

I just want to say thanks for Thinking in Java. What a wonderful book you’ve made here! Not
to mention downloadable for free! As a student I find your books invaluable (I have a copy of
C++ Inside Out, another great book about C++), because they not only teach me the how-to,
but also the whys, which are of course very important in building a strong foundation in
languages such as C++ or Java. I have quite a lot of friends here who love programming just
as I do, and I've told them about your books. They think it’s great! Thanks again! By the way,
I'm Indonesian and I live in Java. Ray Frederick Djajadinata, Student at Trisakti
University, Jakarta

The mere fact that you have made this work free over the Net puts me into shock. I thought
I'd let you know how much I appreciate and respect what you're doing. Shane
LeBouthillier, Computer Engineering student, University of Alberta, Canada

I have to tell you how much I look forward to reading your monthly column. As a newbie to
the world of object oriented programming, I appreciate the time and thoughtfulness that you
give to even the most elementary topic. I have downloaded your book, but you can bet that I
will purchase the hard copy when it is published. Thanks for all of your help. Dan Cashmer,
B. C. Ziegler & Co.

Just want to congratulate you on a job well done. First I stumbled upon the PDF version of
Thinking in Java. Even before I finished reading it, I ran to the store and found Thinking in
C++. Now, I have been in the computer business for over eight years, as a consultant,
software engineer, teacher/trainer, and recently as self-employed, so I'd like to think that I
have seen enough (not “have seen it all,” mind you, but enough). However, these books cause
my girlfriend to call me a “geek.” Not that I have anything against the concept—it is just that I
thought this phase was well beyond me. But I find myself truly enjoying both books, like no
other computer book I have touched or bought so far. Excellent writing style, very nice
introduction of every new topic, and lots of wisdom in the books. Well done. Simon
Goland, simonsez@smartt.com, Simon Says Consulting, Inc.

I must say that your Thinking in Java is great! That is exactly the kind of documentation I
was looking for. Especially the sections about good and poor software design using Java.
Dirk Duehr, Lexikon Verlag, Bertelsmann AG, Germany

Thank you for writing two great books (Thinking in C++, Thinking in Java). You have helped
me immensely in my progression to object oriented programming. Donald Lawson, DCL
Enterprises

Thank you for taking the time to write a really helpful book on Java. If teaching makes you
understand something, by now you must be pretty pleased with yourself. Dominic Turner,
GEAC Support

It’s the best Java book I have ever read—and I read some. Jean-Yves MENGANT, Chief
Software Architect NAT-SYSTEM, Paris, France

Thinking in Java gives the best coverage and explanation. Very easy to read, and I mean the
code fragments as well. Ron Chan, Ph.D., Expert Choice, Inc., Pittsburgh, Pa.

Your book is great. I have read lots of programming books and your book still adds insights
to programming in my mind. Ningjian Wang, Information System Engineer, The
Vanguard Group

Thinking in Java is an excellent and readable book. I recommend it to all my students. Dr.
Paul Gorman, Department of Computer Science, University of Otago, Dunedin,
New Zealand

With your book, I have now understood what object oriented programming means. ...
believe that Java is much more straightforward and often even easier than Perl. Torsten
Romer, Orange Denmark

You make it possible for the proverbial free lunch to exist, not just a soup kitchen type of
lunch but a gourmet delight for those who appreciate good software and books about it. Jose
Suriol, Scylax Corporation

Thanks for the opportunity of watching this book grow into a masterpiece! IT IS THE BEST
book on the subject that I've read or browsed. Jeff Lapchinsky, Programmer, Net
Results Technologies

Your book is concise, accessible and a joy to read. Keith Ritchie, Java Research &
Development Team, KL Group Inc.

It truly is the best book I've read on Java! Daniel Eng
The best book I have seen on Java! Rich Hoffarth, Senior Architect, West Group

Thank you for a wonderful book. I'm having a lot of fun going through the chapters. Fred
Trimble, Actium Corporation

You have mastered the art of slowly and successfully making us grasp the details. You make
learning VERY easy and satisfying. Thank you for a truly wonderful tutorial. Rajesh Rau,
Software Consultant

Thinking in Java rocks the free world! Miko O’Sullivan, President, Idocs Inc.

About Thinking in C++:

Winner of the 1995 Software Development Magazine Jolt Award for Best Book of
the Year

“This book is a tremendous achievement. You owe it to yourself to have a copy on your
shelf. The chapter on iostreams is the most comprehensive and understandable
treatment of that subject I've seen to date.”

Al Stevens

Contributing Editor, Doctor Dobbs Journal

“Eckel’s book is the only one to so clearly explain how to rethink program construction
for object orientation. That the book is also an excellent tutorial on the ins and outs of
C++ is an added bonus.”

Andrew Binstock
Editor, Unix Review

“Bruce continues to amaze me with his insight into C++, and Thinking in C++ is his best
collection of ideas yet. If you want clear answers to difficult questions about C++, buy
this outstanding book.”

Gary Entsminger
Author, The Tao of Objects

“Thinking in C++ patiently and methodically explores the issues of when and how to use
inlines, references, operator overloading, inheritance, and dynamic objects, as well as
advanced topics such as the proper use of templates, exceptions and multiple
inheritance. The entire effort is woven in a fabric that includes Eckel’s own philosophy of
object and program design. A must for every C++ developer’s bookshelf, Thinking in
C++ is the one C++ book you must have if you're doing serious development with C++.”

Richard Hale Shaw
Contributing Editor, PC Magazine

hinking

11

Java

Fourth Edition

Bruce Eckel

President, MindView, Inc.

PRENTICE
HALL

Upper Saddle River, NJ e Boston e Indianapolis ® San Francisco
New York e Toronto @ Montreal ® London e Munich e Paris
Madrid e Capetown e Sydney @ Tokyo e Singapore e Mexico City

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

Java is a trademark of Sun Microsystems, Inc. Windows 95, Windows NT, Windows 2000, and Windows XP are
trademarks of Microsoft Corporation. All other product names and company names mentioned herein are the property
of their respective owners.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied warranty of
any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include custom covers and/or content particular to your business, training goals, marketing focus, and
branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international @pearsoned.com

Visit us on the Web: www.prenhallprofessional.com
Cover design and interior design by Daniel Will-Harris, www.Will-Harris.com
Library of Congress Cataloging-in-Publication Data:

Eckel, Bruce.
Thinking in Java / Bruce Eckel.—4th ed.

p. cm.
Includes bibliographical references and index.
ISBN 0-13-187248-6 (pbk. : alk. paper)

1. Java (Computer program language) L. Title.
QA76.73.J38E25 2006
005.13’3—dc22

2005036339

Copyright © 2006 by Bruce Eckel, President, MindView, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission
in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding
permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
One Lake Street
Upper Saddle River, NJ 07458
Fax: (201) 236-3290

ISBN 0-13-187248-6

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, January 2006

www.mindview.net

Bruce Eckel
and his associates
are available for training in:

* Object-oriented design
* Java
* Design patterns

Consulting:

* Starting your OO design process
* Design reviews

* Code reviews

* Problem analysis

Public seminars are periodically held on various topics for
individuals and small-staff training; check the calendar and
seminar section at www.MindView.net for more information.

‘:k A A

with Multimedia Seminars on CD-ROM

< Presentations created and narrated by Bruce Eckel
< Complete multi-day seminars

< Covers more material than is possible during a live seminar

< Runs on dall platforms using Macromedia Flash

< Demo lectures available at www.MindView.net

<+ Covers the foundations
of Java programming
< Approximately equivalent
to a one-week seminar
++ Follows Thinking in Java,
4th edition; Includes material
through the chapter Error Handling with Exceptions

\

HINK]

< Covers intermediate-level Java topics

A N JAVA

<+ Approximately equivalent to a
one-week seminar
< Follows Thinking in Java, 4th
edition; Includes material from
the chapter Strings through the
end of the book

WWW MINDVIEW NET

Dedication

To Dawn

Overview

Preface

Introduction
Introduction to Objects
Everything Is an Object
Operators

Controlling Execution
Initialization & Cleanup
Access Control

Reusing Classes
Polymorphism
Interfaces

Inner Classes

Holding Your Objects
Error Handling with Exceptions
Strings

Type Information
Generics

Arrays

Containers in Depth
I/0

Enumerated Types
Annotations
Concurrency

Graphical User Interfaces
A: Supplements

B: Resources

Index

15
41
63
93
107
145
165
193
219
243
275
313
355
393
439
535
567
647
725
761
797
933
1035
1039
1045

What's

Preface 1
Java SE5 and SE6................... 2
Java SE6...ccoouvieeriieieieenniieeeeeeeane 2
The 4t edition.......ccceeeeuveenee.. 2
Changes......coceveveereeereneenereneneenees 3
Note on the cover design....... 4
Acknowledgements................ 4
Introduction 9
Prerequisites......ccoccevevvernnnen. 9
Learning Javacccccveeeunenn. 10
GOoalS ...vveeeeerieeeereee e, 10
Teaching from this book....... 11

JDK HTML
documentation..........c........... 11
EXErcisesccoceeeeevveeeeecnvennnn. 12
Foundations for Java............ 12
Source code.......cceeerveeervennnen. 12
Coding standards..........ceceeeruenenne 14
J 255 £0) < U 14

Introduction to Objects 15

The progress

of abstraction..........cceeuveeneee. 15

An object has

an interfacecccoeveeeeenneen. 17

An object

provides services................... 18

The hidden

implementation 19

Reusing the

implementation 20

Inheritance.......ccccceceereeeenneen. 21
Is-a vs. is-like-a relationships......24

Interchangeable objects

with polymorphism 25

The singly rooted

hierarchy......ccccccceeeeveruennen. 28

Containers....ccccceeeeueeersueennne 28

Parameterized types (Generics) ..29
Object creation & lifetime ... 30
Exception handling:

dealing with errors 31
Concurrent programming ... 32
Java and the Internet 33

What is the Web?........ccccevveuenene 33

Client-side programming 34
Server-side programming............ 38
SUMMArY.....ccceeveeveeerecneeenn. 38

Everything Is an Object 41

You manipulate objects

with references.........ceoeeeu.... 41
You must create
all the objectsccceeueeuenee. 42
Where storage lives..........ccc....... 42
Special case: primitive types 43
ATTays in Javaoccceeeeeenieneeneene 44
You never need to
destroy an object.................. 45
SCOPINgG ..evveuvereeeiereneaneene
Scope of objects
Creating new data types:
ClasS...eeeeeeeecreeeeeeeeee, 46
Fields and methods 47
Methods, arguments,
and return values................. 48
The argument list........cccecerveeenenne 49
Building a Java program......50
Name Visibility......coocoveeeerereneeenne 50
Using other components............. 50
The static keyword...................... 51
Your first Java program....... 52
Compiling and running 54
Comments and embedded
documentation..................... 55
Comment documentation............ 55
SYNtaX coveevverieniieiieneeeeeeen. 56
Embedded HTML..........ccceeueuen. 56
Some example tagscoceeveuenene 57
Documentation example 59
Coding style......cccecvveecveennen. 60
SUmMmAary.....cceeceevvvereeeennne 60
EXercisescccceeevveeeecvenenn. 60
Operators 63
Simpler print statements..... 63
Using Java operators............ 64
Precedence.........cceeeeuuneeen.. 64
Assignmentcccceeeeveerneeenne 65
Aliasing during method calls....... 66
Mathematical operators....... 67

Unary minus
and plus operators..........ceceeueueeee. 68

Auto increment and

decrementccccvveeennneen. 69
Relational operators............. 70
Testing object equivalence........... 70
Logical operators................... 71
Short-circuiting........coceeeeververeeenne 72
LiteralSccovveeeveeeeceeeecreeenen. 73
Exponential notation................... 74
Bitwise operators.................. 75
Shift operators........ccccueeneee. 76

Ternary if-else operator......79
String operator

+and 4= oo, 80

Common pitfalls

when using operators............ 81

Casting operators.................. 81
Truncation and rounding 82
Promotioncecceeeeeeveeneenenneenne 83

Java has no “sizeof”............. 83

A compendium

of operators........ccceeveeeveennen. 84

SUMMATY....ccoeerreervinneeeeeeeennns 91

Controlling Execution 03

true and false..................... 93
if-elSe..ieieeeeee, 93
Tterationcccceeveeveeeeeennnenn. 94

do-Whil€ ..o 95

L (0] G 95

The comma operator................... 96
Foreach syntax.........cccoeuuen. 97
FETUNN ceeeveeeeieeeeeeereeenae 99
break and continue.......... 99
The infamous “goto”........... 101
15111771 (] o U 104
Summary.......ccceeeeeveeeenenneens 106

Initialization & Cleanup 107

Guaranteed initialization

with the constructor 107
Method overloading 109
Distinguishing
overloaded methods 110
Overloading with primitives....... 111
Overloading on return values.... 114
Default constructors........... 114
The this keyword 116
Calling constructors
from constructorsc.ceeeueee. 118
The meaning of static............... 119
Cleanup: finalization
and garbage collection........ 119

What is finalize() for? 120
You must perform cleanup......... 121
The termination condition 121
How a garbage collector works.. 122
Member initialization 125
Specifying initialization............. 126
Constructor initialization ...127

Order of initialization.................

static data initialization
Explicit static initialization...... 130

Non-static

instance initialization 132
Array initialization............. 133

Variable argument lists 137
Enumerated types............... 141
Summary.......ccceeeeveeeereennee 143

Access Control 145

package:
the library unit

Code organization
Creating unique
package names.......cccceceevueenenne

A custom tool library

Using imports

to change behavior..................... 152

Package caveat.......coccoeverenuenenne 153
Java access specifiers.......... 153

Package accessccceeeeuenueeeene 153

public: interface access............ 154

private: you can’t touch that! .. 155
protected: inheritance access . 156

Interface

and implementation 158
Class acCessS ...uevevvvereeeennnnen. 159
SuMMmMAry......cceeevvveeeeeeeennnn. 162
Reusing Classes 165
Composition syntax 165
Inheritance syntax.............. 168
Initializing the base class........... 169
Delegationcccecveeueenneen. 171
Combining composition
and inheritance................... 173
Guaranteeing proper cleanup.... 174
Name hidingccccceeeeveevenennenne 177
Choosing composition
vs. inheritance.................... 178
protectedccouuueeeen. 180
Upcastingcccccevevveerevneennns 181
Why “upcasting”?cccceceeeeueneee 181
Composition vs. inheritance
revisitedcccoevveeerenenieeneienene 182
The final keyword.............. 182

final data

final methods.......ccccooveennnnn. 186 The link to
:!na: Classes"' - 1:; the outer class 244
INal CAUTION....ccvvviriiniiiiniieininnnns 1
e 1o Using .this and .new........ 246
Initialization I 8 : 4
. nner classes
and class loading 189)
Initialization with inheritance...189 and upCasting ... 247
SUMMATY.....coeverererererennnn. 191 Inner classes in
. methods and scopes........... 2
Polymorphism 193 P 49
. .. Anonymous
Upcasting revisited.............. 193 inner classes or1
Forgetting the object type.......... 194 Factory Metil-(.).é.l rev151ted """" 2§4
The twist ..coeeeeeveeeeeeeeeeeenns 96 oo
Method-call binding 199 6 Nested classesueeeen..e. 256
Producing the right behavior..... 196 glass;,.s inside int;rffaces 257
o1 18 tward from
Extensibility.......cccccevervienenennene 199 cac l.ng ou
Pitfall: “overriding” a I.nultlplynested class .oooouveeennns 259
private methods..........ccc....... 202 Why inner classes?............. 259
Pitfall: fields Closures & callbacks.................. 261
and static methods.................. 203 Inner classes &
Constructors and COTlt.I'Ol frameworks 263
polymorphism 204 .Inherltlng from
Order of constructor calls.......... 204 inner classes......cccccevueeuennee. 269
Inheritance and cleanup........... 206 Can inner classes
Behavior of polymorphic be overridden? 269
methods inside constructors210 Local inner classes 271
Covariant return types........ 211 . .
o p Inner-class identifiers........ 272
Designing Summary 273
with inheritance.................. 212 . .
Substitution vs. extension 213 HOldlng YOI]I' ObJeCtS 275
Downcasting and Generics and
runtime type information......... 215 type-safe containers........... 276
Summary.......ccceeeeveeeerenneen 217 BasiC CONCEPLS .rvveerrrrenens 278
Interfaces 219 Adding groups
Abstract classes of elements........ccoveveeenneen. 279
and methods..........ccoeu........ 219 Printing containers............ 281
Interfaces......ccccceeeeeuveeeennnes 222 LiSteuuiiieeeieeeeecreeeeeeeeeen, 283
Complete decoupling......... 225 Iterator......ccceveeveeeecnenen. 286
“Multiple inheritance” Listlteratorcccocveeeevveennens 288
INJAVA oo 230 LinkedList.......ccouneuenccs 289
Extending an interface With StaCk 291
inheritance.......cccceeevveennen. 231 Y= U 292
Name collisions when V=T o TP 205
combining Interfaces 233 QU eue o 98
Adapting to an interface.... 234 PriorityQueue..........ccccceeuennnes 2909
FleldS 1m ll’lteI'faceS 235 Col Iection VS. Iterator .. 301
Initializing fields in interfaces.. 236 Foreach and iterators 304
Nesting interfaces.............. 237 The Adapter Method idiom...... 306
Interfaces and factories...... 239 SUMMAry.....ccoeeveeeeveeeiunennns 308
SuUMmMmMAry......cccceeevveeeeeeeeennn. 241 .
Y 4 Error Handling
Inner Classes 243 with Exceptions 2l3)
Creating inner classes........ 243

Concepts...ccccveeeeernreernecnnenens 313

Basic exceptions.........ccueeue. 314
Exception arguments................. 315

Catching an exception 315
The try blockccceeeevevveennee. 316
Exception handlers.................... 316

Creating your

OWn exceptionscceeveenne 317
Exceptions and logging.............. 319

The exception

specification..........cccceuee.... 322

Catching any exception 323
The stack tracecccecveeeveeeunene 324
Rethrowing an exception........... 325
Exception chaining

Standard Java

exceptionscceceeeevveernnen. 330
Special case:
RuntimeException............... 330

Performing cleanup

with finallyc............ 332

What's finally for?... ...333
Using finally during return....335

Pitfall: the lost exception.......... 336
Exception restrictions 338
Constructorsceeeevvvennne. 340
Exception matching........... 344
Alternative approaches...... 345

HiStOry ..eeeeeeeeeieeeeeeeceeees 346

Perspectivescccceeveeeeneenenneene 347

Passing exceptions

to the console.......coueevueeereeennnn. 349

Converting checked

to unchecked exceptions........... 350
Exception guidelines 352
SUMMATY..cccoovureerennrreeenanne 352

Strings 355
Immutable Strings............ 355
Overloading ‘+’ vs.
StringBuilder 356
Unintended recursion 359
Operations on Strings....... 361
Formatting output............. 362

PrintfQ) ... 363

System.out.format()............ 363

The Formatter class............... 363

Format specifierscc.ceceeueueene 364

Formatter conversions........... 366

String.format()c.ccceeuenee. 368
Regular expressions........... 370

Basics
Creating regular expressions.....372
Quantifierscceveeeevvenereenns 374
Pattern and Matcher 375

SPHEQ) e, 382

Replace operationsc..cc.eu.... 383
reSet() uierienneenienieereeseesseeenans 384
Regular expressions
and Java [/Occceveeeeieniennnns 385
Scanning input........ccccueeue. 386
Scanner delimiters 388
Scanning with
regular expressions.................. 389
StringTokenizer............. 389
SUMMAry.....cceeeevueeeeeeeeeeenns 391
Type Information 393
The need for RTTI.............. 393
The Class object................ 395
Class literalS.......ccoeeevreereeerveennen. 399
Generic class references 401
New cast syntaxcceeeeeeeeeunees 403
Checking before a cast 404
Using class literals...........cc.c...... 409
A dynamic instanceof 411

Counting recursively
Registered factories
instanceof vs. Class

equivalence..........ccceeeuernene 416
Reflection: runtime
class information 417
A class method extractor........... 418
Dynamic proxies 420
Null Objects.....ccceevveeeeennnne 424
Mock Objects & Stubs................ 429
Interfaces and
type information 430
SUmMmMary......ccceeeeeveeeeecneeeens 436
Generics 439
Comparison with C++........ 440
Simple generics................... 440
A tuple library 442
A stack classooeeeeeeveeiieenneennns 444
RandomList......ccccceeeveeenunenn. 445
Generic interfaces.............. 446
Generic methods................ 449
Leveraging type
argument inference 450

Varargs and generic methods....452
A generic method

to use with Generators............ 453
A general-purpose Generator.453
Simplifying tuple use................. 455
A Set utility....cccoceevveneerienienenen. 456
Anonymous
inner classes.......ccceevveennnenn. 459

Building

complex models................. 460

The mystery of erasure...... 462
The C++ approach..... .. 464
Migration compatibility............ 466
The problem with erasure 467
The action at the boundaries.... 468

Compensating

for erasure........ccceceeeveeenennne

Creating instances of types
Arrays of genericscoceeeeeuenene

Bounds.....coeeveeevieeereeeennnns
Wildeards....oooeeeeeeeeeeeeeennn.

How smart is the compiler?...... 484

Contravariance..........ccceeveeeueennns 485

Unbounded wildcards............... 488

Capture cONversion.............e.c... 492
ISSUES ..oevveveeeeeeeieeeeeeee, 493

No primitives

as type parameters........co.coueueee 493

Implementing

parameterized interfaces............ 495

Casting and warnings

Overloading........cccceeeeeervenueenne
Base class hijacks an interface.. 498
Self-bounded types............ 500

Curiously recurring generics ... 500

Self-boundingcccceveevervennne. 501
Argument covariance................ 503
Dynamic type safety 506
Exceptionscccceeveeeenneene. 507
DY 55 41 o - 509
Mixings in C++ .eeeveeeeeerreerreesnenns 509

Mixing with interfaces........ ...510
Using the Decorator pattern....... 511
Mixins with dynamic proxies 512

Latent typing.......cccceeveeunee. 514
Compensating for
the lack of latent typing......518
Reflectioncceeeeeeeeceecveecneennns 518
Applying a method
to a sequence.........uueeeeeeiiinnnneeens 519
When you don’t happen
to have the right interface 521
Simulating latent typing
with adapterscccceceevienenennee. 523
Using function objects
as strategiescceeveeereneen. 526
Summary: Is casting
really so bad?...................... 531
Further reading.........cccccccceueenee. 533
Arrays 535

Why arrays are special........ 535

Arrays are

first-class objects 536
Returning an array............. 539
Multidimensional

ATTAYS eevveererreersrrersseeesersaenes 540
Arrays and generics 543
Creating test data

Arrays.fill().coceeveeneenvienienns
Data Generators

Creating arrays

from Generatorsc..c.c..... 551
Arrays utilities.................. 555
Copying an array......c..cccceeeeeene 555
Comparing arraysc..cc.ceeeeeene 556
Array element comparisons 557
Sorting an arrayceeeeeeeeevenne 560
Searching a sorted array............ 561
SumMmary......cccceeeevveeeeeenneees 564

Containers in Depth 567

Full container taxonomy.... 567

Filling containers............... 568
A Generator solution 569
Map generators
Using Abstract classes

Collection
functionalitycccecvenene 580
Optional operations............ 582
Unsupported operations............ 583
List functionality............... 586
Sets and storage order 589
SortedSet.....oeeevvieeieiieennen 591
QUEUES....ccevreeerreerrereeereneenens 594
Priority queues........cccceceeeueuennen. 594
Deques595
Understanding Maps......... 598
Performanceccceeeeverieeneenne.
SortedMapccceevveeceeeneennene
LinkedHashMap

Hashing and hash codes....605
Understanding hashCodeQ607

Hashing for speed.......cccceceeueunee 610
Overriding hashCode()........... 613
Choosing
an implementation.............. 617
A performance
test framework........cececceveveucnnnee 618
Choosing between Lists............ 621
Microbenchmarking dangers626
Choosing between Sets............. 627
Choosing between Maps........... 629
Utilities....ccoveeecveeecrreeennenn. 632

Sorting and searching Lists......635

1/0

Making a Collection

or Map unmodifiable............... 636

Synchronizing a

Collection or Map........cccuc..... 637
Holding references 639

The WeakHashMap............... 640
Java 1.0/1.1 containers...... 642

Vector & Enumeration 642

SUMMATY..cccccvvrrerreenreenaannne 646
647

The File classcouuueeen.e. 647
A directory listerccecceveeuenee. 647
Directory utilities.......cccceceeueuenne 650
Checking for
and creating directories.............

Input and output
Types of InputStream...
Types of OutputStream

Adding attributes

and useful interfaces.......... 659
Reading from an InputStream
with FilterInputStream 660

Writing to an OutputStream
with FilterOutputStream...... 661

Readers & Writers......... 662
Sources and sinks of data 662
Modifying stream behavior 663
Unchanged classes.................... 664

Off by itself:

RandomAccessFile 665

Typical uses

of I/O streams.................... 665
Buffered input file...................... 665
Input from memory.........c.ce..... 666
Formatted memory input........... 667
Basic file outputc.ccceveeeuenneee. 668

Storing and recovering data 669
Reading and writing
random-access files 670

Piped streams

File reading

& writing utilities............... 672
Reading binary files.................... 674
Standard I/0.........cccocu........ 675

Reading from standard input675
Changing System.out

to a PrintWriter........cueeennes 676
Redirecting standard I/0O 676
Process control 677
New I/O e 679

Fetching primitives.................. 684
View buffers.....c..ccccevverrieruenennee. 685
Data manipulation
with buffers......c.cocceevvvencneene 688
Buffer details........cccoeevveecveennnne 689
Memory-mapped files 692
File locking ..605
Compressionccc.eeeuenene 698
Simple compression
With GZIP eoveeeeeeeeeeeeeeeeeeee. 698
Multifile storage with Zip 699
Java ARchives (JARS).......ccu...... 701
Object serialization 703
Finding the class.....c.ccccecevvenenee 706
Controlling serialization............ 707
Using persistence.........cccceueeenee 713
D41 1 U 718
Preferences.......ccoueveeenne... 721
SUMMAryccceeeevvveeeencnneeens 722
Enumerated Types 725
Basic enum features......... 725
Using static imports
With €NUMS...ccveeeieeeecreeieees 726
Adding methods
toanenum......ccceceueeennneee. 727

Overriding enum methods....... 728
enums in

switch statements............. 728
The mystery
of values()ccceeevecrveeennenn. 729
Implements,
not inherits........ccevvvveenneee. 732
Random selection 732
Using interfaces
for organization.................. 734
Using EnumSet
instead of flags.................... 737
Using EnumMap 739
Constant-specific
methods......cooeveeeeveeeeeennns 740
Chain of Responsibility
with eNUMS...ccuiieieeeeieeees 743
State machines with enums......746
Multiple dispatching........... 751
Dispatching with enums.......... 753
Using
constant-specific methods......... 755
Dispatching

with EnumMaps
Using a 2-D array.....cc.cccceeeeeene

Annotations 761
Basic syntaxXccoeceeereneen. 762
Defining annotations................. 762
Meta-annotationsceeueee. 763
Writing
annotation processors......... 765
Annotation elements765
Default value constraints........... 766
Generating external files............ 766
Annotations don’t
support inheritance 769

Implementing the processor......769

Using apt to

process annotations............ 772

Using the Visitor pattern

with apt...cccceveeeieeieeieeene 775

Annotation-based

unit testing.......cccceeevveeeennen. 778
Using @Unit with generics....... 785
No “suites” necessary................. 786
Implementing @Unit 787
Removing test code..........c......... 792

SUMMATrY.....ccceeeervnveeernnnneens 795

Concurrency 797

The many faces of

CONCUITENCY ..ceevvvnnvnnnnnnnnnnns 798
Faster execution.........cccceeeeuneeen. 798
Improving code design 800

Basic threading................... 801
Defining taskscc.ccceeeveeervenenne. 801
The Thread class......cccoccceunee 802
Using EXecutorsc.ceceeueueee 804
Producing return values
from tasksc..ccoceeveriienencenennne. 806
Sleeping .
Priority ..ccccoveeveenienenenicnceenee,

Yielding
Daemon threads.....

Coding variations
Terminology........ceceeeeveeerueruenenne
Joining a thread
Creating responsive

user interfaces........ceceeeeveennennen. 821
Thread groups..... .. 822
Catching exceptions.................. 822
Sharing resources............... 824
Improperly
aCCESSING IEeSOUICES....cveverereens 825
Resolving shared
resource contention................... 827
Atomicity and volatility 831
Atomic classes........ooveerveenveennen. 836
Critical sections.......cccceeevveeveennes 837

Synchronizing on

other objectscecevevveereruenennene 841
Thread local storage 843

Terminating tasks.............. 844
The ornamental garden............. 844
Terminating when blocked........ 847
Interruptionccccceceeveeveenceneene 848
Checking for an interrupt.......... 854

Cooperation

between tasks ...856
wait() and notifyAll() 857
notify() vs. notifyAll()........... 861
Producers and consumers......... 863
Producer-consumers
and QUEUES ...c.eueveervererereeneenennen 868
Using pipes for I/O
between tasks.......ccceevveeveeeneennes 872

Deadlock..........ccceuuereenne... 874

New library

components .
CountDownlLatch.................. 879
CyclicBarriercoeeeeeeueenne 881
DelayQueuecccceveeneennee 883
PriorityBlockingQueue....... 885

The greenhouse controller
with ScheduledExecutor 887

Semaphore........coveeveeneenne 890
Exchangerccccovevvennennes 893
Simulation.........cceceveeevveenns 896
Bank teller simulation 896
The restaurant simulation........ 900
Distributing workcccc...... 904
Performance tuning........... 909
Comparing
mutex technologies................... 909
Lock-free containers.................. 916
Optimistic locking...........cccceeene 922
ReadWriteLocks.................... 923
Active objectscceeeueenee.
Summary......cccceeeeeeveeeeennees
Further reading...
Graphical
User Interfaces 933
PN 0] o) (<3 4T 935
Swing basicsccceevveennnnne. 935
A display framework.................. 937
Making a button................. 938
Capturing an event............. 939
Text areas.....ccccceeeeeeeeeeeennee. 941
Controlling layout 942
BorderLayout..........ccccceeuennnes 942
FlowLayout......cccceeverueriuennns 943
GridLayout.... ..944

GridBaglLayout..........ccccceeueene 944

Absolute positioning.................. 945

BoxLayout........ccceeceeeevueennnnes 945
The best approach?...........cccc.c... 945

The Swing event model 945
Event and listener types 946
Tracking multiple events............ 951

A selection of

Swing components 953
Buttons 953
ICONS..eviiiiiiiiiiiiiccicce, 955
Tool tips 957
Text fields 957
Borders........cooceeeeienennienenenene 959
A mini-editor........coceeveeierennennen. 959
Check DOXES ...covveeeveerreereeenveenns 960
Radio buttons........ccecceveeveeennnne 961

Combo boxes

(drop-down lists) ...
List DOXES ...coveveereenreieerenieene
Tabbed panes......cc.ccceeeeerveruenenne
Message DOXESceveeeereenuennen.
Menus......cccovieniinniiiniiniinienns
Pop-up menus........cceeueevueeenennnes
Drawing.......cceceeveeveeneeseenenvenneens
Dialog DOXES.....cceeververueerreneenennes
File dialogs
HTML on
Swing components.................... 980
Sliders and progress bars 980
Selecting look & feel................... 981
Trees, tables & clipboard........... 983
JNLP and
Java Web Start................... 983
Concurrency & Swing........ 988
Long-running tasks.......c..ccceeue 988
Visual threading.........ccccceceeueene 994
Visual programming
and JavaBeans................... 996
What is a JavaBean? 996
Extracting BeanlInfo
with the Introspector 998
A more sophisticated Bean..... 1002
JavaBeans and
synchronizationceceue.... 1005
Packaging a Bean.................... 1008

More complex Bean support .. 1009
More to Beans

Alternatives to Swing........ 1010
Building Flash Web

clients with Flex................
Hello, FleX...coovvueeereereevreereennns
Compiling MXML.......cccecerunee
MXML and ActionScript
Containers and controls...........

Effects and stylesccc.e....

Events.....coooveeveveeenneeennieennnes

Connecting to Java 1016
Data models
and data binding........c.cccueeue. 1018
Building and deploying............ 1019
Creating SWT
applications.......cccceceennne 1020
Installing SWT.......cccceverveenene 1020
Hello, SWT......ccovveeveeereereenen. 1021
Eliminating redundant code....1023
Menus ..cccoeeeveeereeeiiiiiiiieeeeeenne. 1024
Tabbed panes, buttons,
and events.......cceeveeeeeeveerneenns 1025
Graphics......coceeveevenenniencnenee. 1028
Concurrency in SWT................ 1030
SWT vs. SWIng?....cccceceevvevuennenne 1032
SuUMMmMAary.......eeeeeuveeeeeeenn. 1033
ReSOUIrCeS....uvveeeeeeeirreeeeeieeinnns 1033
A: Supplements 1035
Downloadable
supplements..........ccceeuennne 1035
Thinking in C:
Foundations for Java....... 1035
Thinking in Java
SEMINAT...cccccvvrereeerreeeaanns 1035
Hands-On Java
seminar-on-CD 1036
Thinking in Objects
SEMINAT.....ccceeeeeernrrrrrnannnn. 1036
Thinking in
Enterprise Java................ 1036
Thinking in Patterns
(with Java)ccoceeeveeennen. 1037
Thinking in Patterns
SEMINAT.....ccceeerrrrrrrrrrrrneeen 1037
Design consulting
and reviewsccccceeeennn. 1038
B: Resources 1039
Softwarecccceeeeeevveeeennnns 1039
Editors & IDEs................. 1039
| 37070) & 1039
Analysis & design........cccceveneene. 1040
Python.....ccooeeeveveneneneeenene 1042
My own list of books................ 1042
1045

Preface

I originally approached Java as “just another programming
language,” which in many senses it is.

But as time passed and I studied it more deeply, I began to see that the fundamental intent of
this language was different from other languages I had seen up to that point.

Programming is about managing complexity: the complexity of the problem you want to
solve, laid upon the complexity of the machine in which it is solved. Because of this
complexity, most of our programming projects fail. And yet, of all the programming
languages of which I am aware, almost none have gone all out and decided that their main
design goal would be to conquer the complexity of developing and maintaining programs.* Of
course, many language design decisions were made with complexity in mind, but at some
point there were always other issues that were considered essential to be added into the mix.
Inevitably, those other issues are what cause programmers to eventually “hit the wall” with
that language. For example, C++ had to be backwards-compatible with C (to allow easy
migration for C programmers), as well as efficient. Those are both very useful goals and
account for much of the success of C++, but they also expose extra complexity that prevents
some projects from being finished (certainly, you can blame programmers and management,
but if a language can help by catching your mistakes, why shouldn’t it?). As another example,
Visual BASIC (VB) was tied to BASIC, which wasn’t really designed to be an extensible
language, so all the extensions piled upon VB have produced some truly unmaintainable
syntax. Perl is backwards-compatible with awk, sed, grep, and other Unix tools it was meant
to replace, and as a result it is often accused of producing “write-only code” (that is, after a
while you can’t read it). On the other hand, C++, VB, Perl, and other languages like Smalltalk
had some of their design efforts focused on the issue of complexity and as a result are
remarkably successful in solving certain types of problems.

What has impressed me most as I have come to understand Java is that somewhere in the
mix of Sun’s design objectives, it seems that there was a goal of reducing complexity for the
programmer. As if to say, “We care about reducing the time and difficulty of producing
robust code.” In the early days, this goal resulted in code that didn’t run very fast (although
this has improved over time), but it has indeed produced amazing reductions in development
time—half or less of the time that it takes to create an equivalent C++ program. This result
alone can save incredible amounts of time and money, but Java doesn’t stop there. It goes on
to wrap many of the complex tasks that have become important, such as multithreading and
network programming, in language features or libraries that can at times make those tasks
easy. And finally, it tackles some really big complexity problems: cross-platform programs,
dynamic code changes, and even security, each of which can fit on your complexity spectrum
anywhere from “impediment” to “show-stopper.” So despite the performance problems that
we’ve seen, the promise of Java is tremendous: It can make us significantly more productive
programmers.

In all ways—creating the programs, working in teams, building user interfaces to
communicate with the user, running the programs on different types of machines, and easily
writing programs that communicate across the Internet—Java increases the communication
bandwidth between people.

I think that the results of the communication revolution may not be seen from the effects of
moving large quantities of bits around. We shall see the true revolution because we will all
communicate with each other more easily: one-on-one, but also in groups and as a planet.

1 However, I believe that the Python language comes closest to doing exactly that. See www.Python.org.

I've heard it suggested that the next revolution is the formation of a kind of global mind that
results from enough people and enough interconnectedness. Java may or may not be the tool
that foments that revolution, but at least the possibility has made me feel like 'm doing
something meaningful by attempting to teach the language.

Java SE5 and SEG6

This edition of the book benefits greatly from the improvements made to the Java language
in what Sun originally called JDK 1.5, and then later changed to JDK5 or J2SE5, then finally
they dropped the outdated “2” and changed it to Java SE5. Many of the Java SE5 language
changes were designed to improve the experience of the programmer. As you shall see, the
Java language designers did not completely succeed at this task, but in general they made
large steps in the right direction.

One of the important goals of this edition is to completely absorb the improvements of Java
SE5/6, and to introduce and use them throughout this book. This means that this edition
takes the somewhat bold step of being “Java SE5/6-only,” and much of the code in the book
will not compile with earlier versions of Java; the build system will complain and stop if you
try. However, I think the benefits are worth the risk.

If you are somehow fettered to earlier versions of Java, I have covered the bases by providing
free downloads of previous editions of this book via www.MindView.net. For various
reasons, I have decided not to provide the current edition of the book in free electronic form,
but only the prior editions.

Java SE6

This book was a monumental, time-consuming project, and before it was published, Java
SE6 (code-named mustang) appeared in beta form. Although there were a few minor
changes in Java SE6 that improved some of the examples in the book, for the most part the
focus of Java SE6 did not affect the content of this book; the features were primarily speed
improvements and library features that were outside the purview of this text.

The code in this book was successfully tested with a release candidate of Java SE6, so I do not
expect any changes that will affect the content of this book. If there are any important
changes by the time Java SE6 is officially released, these will be reflected in the book’s source
code, which is downloadable from www.MindView.net.

The cover indicates that this book is for “Java SE5/6,” which means “written for Java SE5
and the very significant changes that version introduced into the language, but is equally
applicable to Java SE6.”

The 4™ edition

The satisfaction of doing a new edition of a book is in getting things “right,” according to
what I have learned since the last edition came out. Often these insights are in the nature of
the saying “A learning experience is what you get when you don’t get what you want,” and my
opportunity is to fix something embarrassing or simply tedious. Just as often, creating the
next edition produces fascinating new ideas, and the embarrassment is far outweighed by the
delight of discovery and the ability to express ideas in a better form than what I have
previously achieved.

There is also the challenge that whispers in the back of my brain, that of making the book
something that owners of previous editions will want to buy. This presses me to improve,

2 Thinking in Java Bruce Eckel

rewrite and reorganize everything that I can, to make the book a new and valuable experience
for dedicated readers.

Changes

The CD-ROM that has traditionally been packaged as part of this book is not part of this
edition. The essential part of that CD, the Thinking in C multimedia seminar (created for
MindView by Chuck Allison), is now available as a downloadable Flash presentation. The
goal of that seminar is to prepare those who are not familiar enough with C syntax to
understand the material presented in this book. Although two of the chapters in this book
give decent introductory syntax coverage, they may not be enough for people without an
adequate background, and Thinking in C is intended to help those people get to the necessary
level.

The Concurrency chapter (formerly called “Multithreading”) has been completely rewritten
to match the major changes in the Java SE5 concurrency libraries, but it still gives you a basic
foundation in the core ideas of concurrency. Without that core, it’s hard to understand more
complex issues of threading. I spent many months working on this, immersed in that
netherworld called “concurrency,” and in the end the chapter is something that not only
provides a basic foundation but also ventures into more advanced territory.

There is a new chapter on every significant new Java SE5 language feature, and the other new
features have been woven into modifications made to the existing material. Because of my
continuing study of design patterns, more patterns have been introduced throughout the
book as well.

The book has undergone significant reorganization. Much of this has come from the teaching
process together with a realization that, perhaps, my perception of what a “chapter” was
could stand some rethought. I have tended towards an unconsidered belief that a topic had to
be “big enough” to justify being a chapter. But especially while teaching design patterns, I
find that seminar attendees do best if I introduce a single pattern and then we immediately
do an exercise, even if it means I only speak for a brief time (I discovered that this pace was
also more enjoyable for me as a teacher). So in this version of the book I've tried to break
chapters up by topic, and not worry about the resulting length of the chapters. I think it has
been an improvement.

I have also come to realize the importance of code testing. Without a built-in test framework
with tests that are run every time you do a build of your system, you have no way of knowing
if your code is reliable or not. To accomplish this in the book, I created a test framework to
display and validate the output of each program. (The framework was written in Python; you
can find it in the downloadable code for this book at www.MindView.net.) Testing in general
is covered in the supplement you will find at http://MindView.net/Books/BetterJava, which
introduces what I now believe are fundamental skills that all programmers should have in
their basic toolkit.

In addition, I've gone over every single example in the book and asked myself, “Why did I do
it this way?” In most cases I have done some modification and improvement, both to make
the examples more consistent within themselves and also to demonstrate what I consider to
be best practices in Java coding (at least, within the limitations of an introductory text).
Many of the existing examples have had very significant redesign and reimplementation.
Examples that no longer made sense to me were removed, and new examples have been
added.

Readers have made many, many wonderful comments about the first three editions of this
book, which has naturally been very pleasant for me. However, every now and then, someone
will have complaints, and for some reason one complaint that comes up periodically is “The
book is too big.” In my mind it is faint damnation indeed if “too many pages” is your only

Preface 3

gripe. (One is reminded of the Emperor of Austria’s complaint about Mozart’s work: “Too
many notes!” Not that I am in any way trying to compare myself to Mozart.) In addition, I
can only assume that such a complaint comes from someone who is yet to be acquainted with
the vastness of the Java language itself and has not seen the rest of the books on the subject.
Despite this, one of the things I have attempted to do in this edition is trim out the portions
that have become obsolete, or at least nonessential. In general, I've tried to go over
everything, remove what is no longer necessary, include changes, and improve everything I
could. I feel comfortable removing portions because the original material remains on the
Web site (www.MindView.net), in the form of the freely downloadable 15t through 314
editions of the book, and in the downloadable supplements for this book.

For those of you who still can’t stand the size of the book, I do apologize. Believe it or not, I
have worked hard to keep the size down.

Note on the cover design

The cover of Thinking in Java is inspired by the American Arts & Crafts Movement that
began near the turn of the century and reached its zenith between 1900 and 1920. It began in
England as a reaction to both the machine production of the Industrial Revolution and the
highly ornamental style of the Victorian era. Arts & Crafts emphasized spare design, the
forms of nature as seen in the art nouveau movement, hand-crafting, and the importance of
the individual craftsperson, and yet it did not eschew the use of modern tools. There are
many echoes with the situation we have today: the turn of the century, the evolution from the
raw beginnings of the computer revolution to something more refined and meaningful, and
the emphasis on software craftsmanship rather than just manufacturing code.

I see Java in this same way: as an attempt to elevate the programmer away from an operating
system mechanic and toward being a “software craftsman.”

Both the author and the book/cover designer (who have been friends since childhood) find
inspiration in this movement, and both own furniture, lamps, and other pieces that are either
original or inspired by this period.

The other theme in this cover suggests a collection box that a naturalist might use to display
the insect specimens that he or she has preserved. These insects are objects that are placed
within the box objects. The box objects are themselves placed within the “cover object,”
which illustrates the fundamental concept of aggregation in object-oriented programming. Of
course, a programmer cannot help but make the association with “bugs,” and here the bugs
have been captured and presumably killed in a specimen jar, and finally confined within a
small display box, as if to imply Java’s ability to find, display, and subdue bugs (which is truly
one of its most powerful attributes).

In this edition, I created the watercolor painting that you see as the cover background.

Acknowledgements

First, thanks to associates who have worked with me to give seminars, provide consulting,
and develop teaching projects: Dave Bartlett, Bill Venners, Chuck Allison, Jeremy Meyer, and
Jamie King. I appreciate your patience as I continue to try to develop the best model for
independent folks like us to work together.

Recently, no doubt because of the Internet, I have become associated with a surprisingly
large number of people who assist me in my endeavors, usually working from their own
home offices. In the past, I would have had to pay for a pretty big office space to
accommodate all these folks, but because of the Net, FedEx, and the telephone, I'm able to
benefit from their help without the extra costs. In my attempts to learn to “play well with

4 Thinking in Java Bruce Eckel

others,” you have all been very helpful, and I hope to continue learning how to make my own
work better through the efforts of others. Paula Steuer has been invaluable in taking over my
haphazard business practices and making them sane (thanks for prodding me when I don’t
want to do something, Paula). Jonathan Wilcox, Esq., has sifted through my corporate
structure and turned over every possible rock that might hide scorpions, and frog-marched
us through the process of putting everything straight, legally. Thanks for your care and
persistence. Sharlynn Cobaugh has made herself an expert in sound processing and an
essential part of creating the multimedia training experiences, as well as tackling other
problems. Thanks for your perseverance when faced with intractable computer problems.
The folks at Amaio in Prague have helped me out with several projects. Daniel Will-Harris
was the original work-by-Internet inspiration, and he is of course fundamental to all my
graphic design solutions.

Over the years, through his conferences and workshops, Gerald Weinberg has become my
unofficial coach and mentor, for which I thank him.

Ervin Varga was exceptionally helpful with technical corrections on the 4t edition—although
other people helped on various chapters and examples, Ervin was my primary technical
reviewer for the book, and he also took on the task of rewriting the solution guide for the 4t
edition. Ervin found errors and made improvements to the book that were invaluable
additions to this text. His thoroughness and attention to detail are amazing, and he’s far and
away the best technical reader I've ever had. Thanks, Ervin.

My weblog on Bill Venners’ www.Artima.com has been a source of assistance when I've
needed to bounce ideas around. Thanks to the readers that have helped me clarify concepts
by submitting comments, including James Watson, Howard Lovatt, Michael Barker, and
others, in particular those who helped with generics.

Thanks to Mark Welsh for his continuing assistance.

Evan Cofsky continues to be very supportive by knowing off the top of his head all the arcane
details of setting up and maintaining Linux-based Web servers, and keeping the MindView
server tuned and secure.

A special thanks to my new friend, coffee, who generated nearly boundless enthusiasm for
this project. Camp4 Coffee in Crested Butte, Colorado, has become the standard hangout
when people have come up to take MindView seminars, and during seminar breaks it is the
best catering I've ever had. Thanks to my buddy Al Smith for creating it and making it such a
great place, and for being such an interesting and entertaining part of the Crested Butte
experience. And to all the Camp4 barristas who so cheerfully dole out beverages.

Thanks to the folks at Prentice Hall for continuing to give me what I want, putting up with all
my special requirements, and for going out of their way to make things run smoothly for me.

Certain tools have proved invaluable during my development process and I am very grateful
to the creators every time I use these. Cygwin (www.cygwin.com) has solved innumerable
problems for me that Windows can’t/won’t and I become more attached to it each day (if I
only had this 15 years ago when my brain was still hard-wired with Gnu Emacs). IBM’s
Eclipse (www.eclipse.org) is a truly wonderful contribution to the development community,
and I expect

to see great things from it as it continues to evolve (how did IBM become hip? I must have
missed a memo). JetBrains IntelliJ Idea continues to forge creative new paths in
development tools.

I began using Enterprise Architect from Sparxsystems on this book, and it has rapidly
become my UML tool of choice. Marco Hunsicker’s Jalopy code formatter
(www.triemax.com) came in handy on numerous occasions, and Marco was very helpful in

Preface 5

configuring it to my particular needs. I've also found Slava Pestov’s JEdit and plug-ins to be
helpful at times (www.jedit.org) and it’s quite a reasonable beginner’s editor for seminars.

And of course, if I don’t say it enough everywhere else, I use Python (www.Python.org)
constantly to solve problems, the brainchild of my buddy Guido Van Rossum and the gang of
goofy geniuses with whom I spent a few great days sprinting (Tim Peters, I've now framed
that mouse you borrowed, officially named the “TimBotMouse”). You guys need to find
healthier places to eat lunch. (Also, thanks to the entire Python community, an amazing
bunch of people.)

Lots of people sent in corrections and I am indebted to them all, but particular thanks go to
(for the 1%t edition): Kevin Raulerson (found tons of great bugs), Bob Resendes (simply
incredible), John Pinto, Joe Dante, Joe Sharp (all three were fabulous), David Combs (many
grammar and clarification corrections), Dr. Robert Stephenson, John Cook, Franklin Chen,
Zev Griner, David Karr, Leander A. Stroschein, Steve Clark, Charles A. Lee, Austin Maher,
Dennis P. Roth, Roque Oliveira, Douglas Dunn, Dejan Ristic, Neil Galarneau, David B.
Malkovsky, Steve Wilkinson, and a host of others. Prof. Ir. Marc Meurrens put in a great deal
of effort to publicize and make the electronic version of the 15t edition of the book available in
Europe.

Thanks to those who helped me rewrite the examples to use the Swing library (for the 2rd
edition), and for other assistance: Jon Shvarts, Thomas Kirsch, Rahim Adatia, Rajesh Jain,
Ravi Manthena, Banu Rajamani, Jens Brandt, Nitin Shivaram, Malcolm Davis, and everyone
who expressed support.

In the 4t edition, Chris Grindstaff was very helpful during the development of the SWT
section, and Sean Neville wrote the first draft of the Flex section for me.

Kraig Brockschmidt and Gen Kiyooka have been some of the smart technical people in my
life who have become friends and have also been both influential and unusual in that they do
yoga and practice other forms of spiritual enhancement, which I find quite inspirational and
instructional.

It’s not that much of a surprise to me that understanding Delphi helped me understand Java,
since there are many concepts and language design decisions in common. My Delphi friends
provided assistance by helping me gain insight into that marvelous programming
environment. They are Marco Cantu (another Italian—perhaps being steeped in Latin gives
one aptitude for programming languages?), Neil Rubenking (who used to do the
yoga/vegetarian/Zen thing until he discovered computers), and of course Zack Urlocker (the
original Delphi product manager), a long-time pal whom I've traveled the world with. We're
all indebted to the brilliance of Anders Hejlsberg, who continues to toil away at C# (which, as
you’ll learn in this book, was a major inspiration for Java SE5).

My friend Richard Hale Shaw’s insights and support have been very helpful (and Kim’s, too).
Richard and I spent many months giving seminars together and trying to work out the
perfect learning experience for the attendees.

The book design, cover design, and cover photo were created by my friend Daniel Will-
Harris, noted author and designer (www.Will-Harris.com), who used to play with rub-on
letters in

junior high school while he awaited the invention of computers and desktop publishing, and
complained of me mumbling over my algebra problems. However, I produced the camera-

ready pages myself, so the typesetting errors are mine. Microsoft® Word XP for Windows
was used to write the book and to create camera-ready pages in Adobe Acrobat; the book was
created directly from the Acrobat PDF files. As a tribute to the electronic age, I happened to
be overseas when I produced the final versions of the 15t and 214 editions of the book—the 15t
edition was sent from Cape Town, South Africa, and the 2"d edition was posted from Prague.

Thinking in Java Bruce Eckel

The 3 and 4™ came from Crested Butte, Colorado. The body typeface is Georgia and the
headlines are in Verdana. The cover typeface is ITC Rennie Mackintosh.

A special thanks to all my teachers and all my students (who are my teachers as well).

Molly the cat often sat in my lap while I worked on this edition, and thus offered her own
kind of warm, furry support.

The supporting cast of friends includes, but is not limited to: Patty Gast (Masseuse
extraordinaire), Andrew Binstock, Steve Sinofsky, JD Hildebrandt, Tom Keffer, Brian
McElhinney, Brinkley Barr, Bill Gates at Midnight Engineering Magazine, Larry Constantine
and Lucy Lockwood, Gene Wang, Dave Mayer, David Intersimone, Chris and Laura Strand,
the Almquists, Brad Jerbic, Marilyn Cvitanic, Mark Mabry, the Robbins families, the Moelter
families (and the McMillans), Michael Wilk, Dave Stoner, the Cranstons, Larry Fogg, Mike
Sequeira, Gary Entsminger, Kevin and Sonda Donovan, Joe Lordi, Dave and Brenda Bartlett,
Patti Gast, Blake, Annette & Jade, the Rentschlers, the Sudeks, Dick, Patty, and Lee Eckel,
Lynn and Todd, and their families. And of course, Mom and Dad.

Preface 7

Introduction

“He gave man speech, and speech created thought, Which is the
measure of the Universe”—Prometheus Unbound, Shelley

Human beings ... are very much at the mercy of the particular language which has
become the medium of expression for their society. It is quite an illusion to imagine
that one adjusts to reality essentially without the use of language and that language
is merely an incidental means of solving specific problems of communication and
reflection. The fact of the matter is that the “real world” is to a large extent
unconsciously built up on the language habits of the group.

The Status of Linguistics as a Science, 1929, Edward Sapir

Like any human language, Java provides a way to express concepts. If successful, this
medium of expression will be significantly easier and more flexible than the alternatives as
problems grow larger and more complex.

You can’t look at Java as just a collection of features—some of the features make no sense in
isolation. You can use the sum of the parts only if you are thinking about design, not simply
coding. And to understand Java in this way, you must understand the problems with the
language and with programming in general. This book discusses programming problems,
why they are problems, and the approach Java has taken to solve them. Thus, the set of
features that I explain in each chapter are based on the way I see a particular type of problem
being solved with the language. In this way I hope to move you, a little at a time, to the point
where the Java mindset becomes your native tongue.

Throughout, I'll be taking the attitude that you want to build a model in your head that allows
you to develop a deep understanding of the language; if you encounter a puzzle, you’ll feed it
to your model and deduce the answer.

Prerequisites

This book assumes that you have some programming familiarity: You understand that a
program is a collection of statements, the idea of a subroutine/function/macro, control
statements such as “if” and looping constructs such as “while,” etc. However, you might have
learned this in many places, such as programming with a macro language or working with a
tool like Perl. As long as you’ve programmed to the point where you feel comfortable with the
basic ideas of programming, you’ll be able to work through this book. Of course, the book will
be easier for C programmers and more so for C++ programmers, but don’t count yourself out
if you're not experienced with those languages—however, come willing to work hard. Also,
the Thinking in C multimedia seminar that you can download from www.MindView.net will
bring you up to speed in the fundamentals necessary to learn Java. However, I will be
introducing the concepts of object-oriented programming (OOP) and Java’s basic control
mechanisms.

Although references may be made to C and C++ language features, these are not intended to
be insider comments, but instead to help all programmers put Java in perspective with those
languages, from which, after all, Java is descended. I will attempt to make these references
simple and to explain anything that I think a non-C/C++ programmer would not be familiar
with.

Learning Java

At about the same time that my first book, Using C++ (Osborne/McGraw-Hill, 1989), came
out, I began teaching that language. Teaching programming ideas has become my profession;
I've seen nodding heads, blank faces, and puzzled expressions in audiences all over the world
since 1987. As I began giving in-house training with smaller groups of people, I discovered
something during the exercises. Even those people who were smiling and nodding were
confused about many issues. I found out, by creating and chairing the C++ track at the
Software Development Conference for a number of years (and later creating and chairing the
Java track), that I and other speakers tended to give the typical audience too many topics too
quickly. So eventually, through both variety in the audience level and the way that I
presented the material, I would end up losing some portion of the audience. Maybe it’s
asking too much, but because I am one of those people resistant to traditional lecturing (and
for most people, I believe, such resistance results from boredom), I wanted to try to keep
everyone up to speed.

For a time, I was creating a number of different presentations in fairly short order. Thus, I
ended up learning by experiment and iteration (a technique that also works well in program
design). Eventually, I developed a course using everything I had learned from my teaching
experience. My company, MindView, Inc., now gives this as the public and in-house Thinking
in Java seminar; this is our main introductory seminar that provides the foundation for our
more advanced seminars. You can find details at www.MindView.net. (The introductory
seminar is also available as the Hands-On Java CD ROM. Information is available at the
same Web site.)

The feedback that I get from each seminar helps me change and refocus the material until I
think it works well as a teaching medium. But this book isn’t just seminar notes; I tried to
pack as much information as I could within these pages, and structured it to draw you
through into the next subject. More than anything, the book is designed to serve the solitary
reader who is struggling with a new programming language.

Goals

Like my previous book, Thinking in C++, this book was designed with one thing in mind: the
way people learn a language. When I think of a chapter in the book, I think in terms of what
makes a good lesson during a seminar. Seminar audience feedback helped me understand the
difficult parts that needed illumination. In the areas where I got ambitious and included too
many features all at once, I came to know—through the process of presenting the material—
that if you include a lot of new features, you need to explain them all, and this easily
compounds the student’s confusion.

Each chapter tries to teach a single feature, or a small group of associated features, without
relying on concepts that haven’t been introduced yet. That way you can digest each piece in
the context of your current knowledge before moving on.

My goals in this book are to:

1. Present the material one simple step at a time so that you can easily digest each idea
before moving on. Carefully sequence the presentation of features so that you're
exposed to a topic before you see it in use. Of course, this isn’t always possible; in
those situations, a brief introductory description is given.

2. Use examples that are as simple and short as possible. This sometimes prevents me
from tackling “real world” problems, but I've found that beginners are usually happier
when they can understand every detail of an example rather than being impressed by

10

Thinking in Java Bruce Eckel

the scope of the problem it solves. Also, there’s a severe limit to the amount of code
that can be absorbed in a classroom situation. For this I will no doubt receive criticism
for using “toy examples,” but I'm willing to accept that in favor of producing
something pedagogically useful.

3. Give you what I think is important for you to understand about the language, rather
than everything that I know. I believe there is an information importance hierarchy,
and that there are some facts that 95 percent of programmers will never need to
know—details that just confuse people and increase their perception of the complexity
of the language. To take an example from C, if you memorize the operator precedence
table (I never did), you can write clever code. But if you need to think about it, it will
also confuse the reader/maintainer of that code. So forget about precedence, and use
parentheses when things aren’t clear.

4. Keep each section focused enough so that the lecture time—and the time between
exercise periods—is small. Not only does this keep the audience’s minds more active
and involved during a hands-on seminar, but it gives the reader a greater sense of
accomplishment.

5. Provide you with a solid foundation so that you can understand the issues well enough
to move on to more difficult coursework and books.

Teaching from this book

The original edition of this book evolved from a one-week seminar which was, when Java was
in its infancy, enough time to cover the language. As Java grew and continued to encompass
more and more features and libraries, I stubbornly tried to teach it all in one week. At one
point, a customer asked me to teach “just the fundamentals,” and in doing so I discovered
that trying to cram everything into a single week had become painful for both myself and for
seminarians. Java was no longer a “simple” language that could be taught in a week.

That experience and realization drove much of the reorganization of this book, which is now
designed to support a two-week seminar or a two-term college course. The introductory
portion ends with the Error Handling with Exceptions chapter, but you may also want to
supplement this with an introduction to JDBC, Servlets and JSPs. This provides a foundation
course, and is the core of the Hands-On Java CD ROM. The remainder of the book comprises
an intermediatelevel course, and is the material covered in the Intermediate Thinking in
Java CD ROM. Both of these CD ROMs are for sale at www.MindView.net.

Contact Prentice-Hall at www.prenhallprofessional.com for information about professor
support materials for this book.

JDK HTML documentation

The Java language and libraries from Sun Microsystems (a free download from
http://java.sun.com) come with documentation in electronic form, readable using a Web
browser. Many books published on Java have duplicated this documentation. So you either
already have it or you can download it, and unless necessary, this book will not repeat that
documentation, because it’s usually much faster if you find the class descriptions with your
Web browser than if you look them up in a book (and the online documentation is probably
more upto-date). You’'ll simply be referred to “the JDK documentation.” This book will
provide extra descriptions of the classes only when it’s necessary to supplement that
documentation so you can understand a particular example.

Introduction 11

Exercises

I've discovered that simple exercises are exceptionally useful to complete a student’s
understanding during a seminar, so you'll find a set at the end of each chapter.

Most exercises are designed to be easy enough that they can be finished in a reasonable
amount of time in a classroom situation while the instructor observes, making sure that all
the students are absorbing the material. Some are more challenging, but none present major
challenges.

Solutions to selected exercises can be found in the electronic document The Thinking in Java
Annotated Solution Guide, available for sale from www.MindView.net.

Foundations for Java

Another bonus with this edition is the free multimedia seminar that you can download from

www.MindView.net. This is the Thinking in C seminar that gives you an introduction to the

C syntax, operators, and functions that Java syntax is based upon. In previous editions of the
book this was in the Foundations for Java CD that was packaged with the book, but now the
seminar may be freely downloaded.

I originally commissioned Chuck Allison to create Thinking in C as a standalone product, but
decided to include it with the 224 edition of Thinking in C++ and 24 and 3" editions of
Thinking in Java because of the consistent experience of having people come to seminars
without an adequate background in basic C syntax. The thinking apparently goes “I'm a
smart programmer and I don’t want to learn C, but rather C++ or Java, so I'll just skip C and
go directly to C++/Java.” After arriving at the seminar, it slowly dawns on folks that the
prerequisite of understanding C syntax is there for a very good reason.

Technologies have changed, and it made more sense to rework Thinking in C as a
downloadable Flash presentation rather than including it as a CD. By providing this seminar
online, I can ensure that everyone can begin with adequate preparation.

The Thinking in C seminar also allows the book to appeal to a wider audience. Even though
the Operators and Controlling Execution chapters do cover the fundamental parts of Java
that come from C, the online seminar is a gentler introduction, and assumes even less about
the student’s programming background than does the book.

Source code

All the source code for this book is available as copyrighted freeware, distributed as a single
package, by visiting the Web site www.MindView.net. To make sure that you get the most
current version, this is the official code distribution site. You may distribute the code in
classroom and other educational situations.

The primary goal of the copyright is to ensure that the source of the code is properly cited,
and to prevent you from republishing the code in print media without permission. (As long as
the source is cited, using examples from the book in most media is generally not a problem.)

In each source-code file you will find a reference to the following copyright notice:

//:! Copyright.txt This computer source code is Copyright ©2006
MindView, Inc. All Rights Reserved.

12

Thinking in Java Bruce Eckel

Permission to use, copy, modify, and distribute this computer source
code (Source Code) and its documentation without fee and without a
written agreement for the purposes set forth below is hereby granted,
provided that the above copyright notice, this paragraph and the
following five numbered paragraphs appear in all copies.

1. Permission 1is granted to compile the Source Code and to include the
compiled code, in executable format only, in personal and commercial
software programs.

2. Permission is granted to use the Source Code without modification in
classroom situations, including in presentation materials, provided that
the book "Thinking in Java" is cited as the origin.

3. Permission to incorporate the Source Code into printed media may be
obtained by contacting:

MindView, Inc. 5343 Valle Vista La Mesa, California 91941
Wayne@MindView.net

4. The Source Code and documentation are copyrighted by MindView, Inc.
The Source code 1is provided without express or implied warranty of any
kind, including any implied warranty of merchantability, fitness for a
particular purpose or non-infringement. MindView, Inc. does not warrant
that the operation of any program that includes the Source Code will be
uninterrupted or error-free. MindView, Inc. makes no representation
about the suitability of the Source Code or of any software that
includes the Source Code for any purpose. The entire risk as to the
quality and performance of any program that includes the Source Code is
with the user of the Source Code. The user understands that the Source
Code was developed for research and instructional purposes and is
advised not to rely exclusively for any reason on the Source Code or any
program that includes the Source Code. Should the Source Code or any
resulting software prove defective, the user assumes the cost of all
necessary servicing, repair, or correction.

5. IN NO EVENT SHALL MINDVIEW, INC., OR ITS PUBLISHER BE LIABLE TO ANY
PARTY UNDER ANY LEGAL THEORY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, BUSINESS INTERRUPTION,
LOSS OF BUSINESS INFORMATION, OR ANY OTHER PECUNIARY LOSS, OR FOR
PERSONAL INJURIES, ARISING OUT OF THE USE OF THIS SOURCE CODE AND ITS
DOCUMENTATION, OR ARISING OUT OF THE INABILITY TO USE ANY RESULTING
PROGRAM, EVEN IF MINDVIEW, INC., OR ITS PUBLISHER HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. MINDVIEW, INC. SPECIFICALLY DISCLAIMS
ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOURCE CODE
AND DOCUMENTATION PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, WITHOUT ANY
ACCOMPANYING SERVICES FROM MINDVIEW, INC., AND MINDVIEW, INC. HAS NO

OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Please note that MindView, Inc. maintains a Web site which is the sole
distribution point for electronic copies of the Source Code,
http://www.MindView.net (and official mirror sites), where it is freely
available under the terms stated above.

If you think you’ve found an error in the Source Code, please submit a
correction using the feedback system that you will find at
http://www.MindView.net. ///:~

You may use the code in your projects and in the classroom (including your presentation
materials) as long as the copyright notice that appears in each source file is retained.

Introduction 13

Coding standards

In the text of this book, identifiers (methods, variables, and class names) are set in bold.
Most keywords are also set in bold, except for those keywords that are used so much that the
bolding can become tedious, such as “class.”

I use a particular coding style for the examples in this book. As much as possible, this follows
the style that Sun itself uses in virtually all of the code you will find at its site (see
http://java.sun.com/docs/codeconv/index.html), and seems to be supported by most Java
development environments. If you've read my other works, you’ll also notice that Sun’s
coding style coincides with mine—this pleases me, although I had nothing (that I know of) to
do with it. The subject of formatting style is good for hours of hot debate, so I'll just say I'm
not trying to dictate correct style via my examples; I have my own motivation for using the
style that I do. Because Java is a free-form programming language, you can continue to use
whatever style you're comfortable with. One solution to the coding style issue is to use a tool
like Jalopy (www.triemax.com), which assisted me in developing this book, to change
formatting to that which suits you.

The code files printed in the book are tested with an automated system, and should all work
without compiler errors.

This book focuses on and is tested with Java SE5/6. If you need to learn about earlier
releases of the language that are not covered in this edition, the 15t through 34 editions of the
book are freely downloadable at www.MindView.net.

Errors

No matter how many tools a writer uses to detect errors, some always creep in and these
often leap off the page for a fresh reader. If you discover anything you believe to be an error,
please use the link you will find for this book at www.MindView.net to submit the error
along with your suggested correction. Your help is appreciated.

14

Thinking in Java Bruce Eckel

Introduction
to Objects

“We cut nature up, organize it into concepts, and ascribe significances
as we do, largely because we are parties to an agreement that holds
throughout our speech community and is codified in the patterns of
our language ... we cannot talk at all except by subscribing to the
organization and classification of data which the agreement decrees.”
Benjamin Lee Whorf (1897-1941)

The genesis of the computer revolution was in a machine. The genesis of our programming
languages thus tends to look like that machine.

But computers are not so much machines as they are mind amplification tools (“bicycles for
the mind,” as Steve Jobs is fond of saying) and a different kind of expressive medium. As a
result, the tools are beginning to look less like machines and more like parts of our minds,
and also like other forms of expression such as writing, painting, sculpture, animation, and
filmmaking. Object-oriented programming (OOP) is part of this movement toward using the
computer as an expressive medium.

This chapter will introduce you to the basic concepts of OOP, including an overview of
development methods. This chapter, and this book, assumes that you have some
programming experience, although not necessarily in C. If you think you need more
preparation in programming before tackling this book, you should work through the
Thinking in C multimedia seminar, downloadable from www.MindView.net.

This chapter is background and supplementary material. Many people do not feel
comfortable wading into object-oriented programming without understanding the big picture
first. Thus, there are many concepts that are introduced here to give you a solid overview of
OOP. However, other people may not get the big picture concepts until they’ve seen some of
the mechanics first; these people may become bogged down and lost without some code to
get their hands on. If you’re part of this latter group and are eager to get to the specifics of the
language, feel free to jump past this chapter—skipping it at this point will not prevent you
from writing programs or learning the language. However, you will want to come back here
eventually to fill in your knowledge so you can understand why objects are important and
how to design with them.

The progress of abstraction

All programming languages provide abstractions. It can be argued that the complexity of the
problems you're able to solve is directly related to the kind and quality of abstraction. By
“kind” I mean, “What is it that you are abstracting?” Assembly language is a small abstraction
of the underlying machine. Many so-called “imperative” languages that followed (such as
FORTRAN, BASIC, and C) were abstractions of assembly language. These languages are big
improvements over assembly language, but their primary abstraction still requires you to
think in terms of the structure of the computer rather than the structure of the problem you
are trying to solve. The programmer must establish the association between the machine
model (in the “solution space,” which is the place where you're implementing that solution,
such as a computer) and the model of the problem that is actually being solved (in the

“problem space,” which is the place where the problem exists, such as a business). The effort
required to perform this mapping, and the fact that it is extrinsic to the programming
language, produces programs that are difficult to write and expensive to maintain, and as a
side effect created the entire “programming methods” industry.

The alternative to modeling the machine is to model the problem you're trying to solve. Early
languages such as LISP and APL chose particular views of the world (“All problems are
ultimately lists” or “All problems are algorithmic,” respectively). Prolog casts all problems
into chains of decisions. Languages have been created for constraint-based programming and
for programming exclusively by manipulating graphical symbols. (The latter proved to be too
restrictive.) Each of these approaches may be a good solution to the particular class of
problem they’re designed to solve, but when you step outside of that domain they become
awkward.

The object-oriented approach goes a step further by providing tools for the programmer to
represent elements in the problem space. This representation is general enough that the
programmer is not constrained to any particular type of problem. We refer to the elements in
the problem space and their representations in the solution space as “objects.” (You will also
need other objects that don’t have problem-space analogs.) The idea is that the program is
allowed to adapt itself to the lingo of the problem by adding new types of objects, so when
you read the code describing the solution, you’re reading words that also express the
problem. This is a more flexible and powerful language abstraction than what we’ve had
before.* Thus, OOP allows you to describe the problem in terms of the problem, rather than
in terms of the computer where the solution will run. There’s still a connection back to the
computer: Each object looks quite a bit like a little computer—it has a state, and it has
operations that you can ask it to perform. However, this doesn’t seem like such a bad analogy
to objects in the real world—they all have characteristics and behaviors.

Alan Kay summarized five basic characteristics of Smalltalk, the first successful object-
oriented language and one of the languages upon which Java is based. These characteristics
represent a pure approach to object-oriented programming:

1. Everything is an object. Think of an object as a fancy variable; it stores data,
but you can “make requests” to that object, asking it to perform operations on itself. In
theory, you can take any conceptual component in the problem you’re trying to solve
(dogs, buildings, services, etc.) and represent it as an object in your program.

2. A program is a bunch of objects telling each other what to do by
sending messages. To make a request of an object, you “send a message” to that
object. More concretely, you can think of a message as a request to call a method that
belongs to a particular object.

3. Each object has its own memory made up of other objects. Put
another way, you create a new kind of object by making a package containing existing
objects. Thus, you can build complexity into a program while hiding it behind the
simplicity of objects.

4. Every object has a type. Using the parlance, each object is an instance of a
class, in which “class” is synonymous with “type.” The most important distinguishing
characteristic of a class is “What messages can you send to it?”

5. All objects of a particular type can receive the same messages. This
is actually a loaded statement, as you will see later. Because an object of type “circle” is
also an object of type “shape,” a circle is guaranteed to accept shape messages. This

1 Some language designers have decided that object-oriented programming by itself is not adequate to easily solve all
programming problems, and advocate the combination of various approaches into multiparadigm programming
languages. See Multiparadigm Programming in Leda by Timothy Budd (Addison-Wesley, 1995).

Thinking in Java Bruce Eckel

means you can write code that talks to shapes and automatically handle anything that
fits the description of a shape. This substitutability is one of the powerful concepts in
OOP.

Booch offers an even more succinct description of an object:
An object has state, behavior and identity.

This means that an object can have internal data (which gives it state), methods (to produce
behavior), and each object can be uniquely distinguished from every other object—to put this
in a concrete sense, each object has a unique address in memory.2

An object has an interface

Aristotle was probably the first to begin a careful study of the concept of type; he spoke of
“the class of fishes and the class of birds.” The idea that all objects, while being unique, are
also part of a class of objects that have characteristics and behaviors in common was used
directly in the first object-oriented language, Simula-67, with its fundamental keyword class
that introduces a new type into a program.

Simula, as its name implies, was created for developing simulations such as the classic “bank
teller problem.” In this, you have numerous tellers, customers, accounts, transactions, and
units of money—a lot of “objects.” Objects that are identical except for their state during a
program’s execution are grouped together into “classes of objects,” and that’s where the
keyword class came from. Creating abstract data types (classes) is a fundamental concept in
object-oriented programming. Abstract data types work almost exactly like built-in types:
You can create variables of a type (called objects or instances in object-oriented parlance)
and manipulate those variables (called sending messages or requests; you send a message
and the object figures out what to do with it). The members (elements) of each class share
some commonality: Every account has a balance, every teller can accept a deposit, etc. At the
same time, each member has its own state: Each account has a different balance, each teller
has a name. Thus, the tellers, customers, accounts, transactions, etc., can each be
represented with a unique entity in the computer program. This entity is the object, and each
object belongs to a particular class that defines its characteristics and behaviors.

So, although what we really do in object-oriented programming is create new data types,
virtually all object-oriented programming languages use the “class” keyword. When you see
the word “type” think “class” and vice versa.3

Since a class describes a set of objects that have identical characteristics (data elements) and
behaviors (functionality), a class is really a data type because a floating point number, for
example, also has a set of characteristics and behaviors. The difference is that a programmer
defines a class to fit a problem rather than being forced to use an existing data type that was
designed to represent a unit of storage in a machine. You extend the programming language
by adding new data types specific to your needs. The programming system welcomes the new
classes and gives them all the care and type checking that it gives to built-in types.

The object-oriented approach is not limited to building simulations. Whether or not you
agree that any program is a simulation of the system you’re designing, the use of OOP
techniques can easily reduce a large set of problems to a simple solution.

2 This is actually a bit restrictive, since objects can conceivably exist in different machines and address
spaces, and they can also be stored on disk. In these cases, the identity of the object must be determined by
something other than memory address.

3 Some people make a distinction, stating that type determines the interface while class is a particular
implementation of that interface.

Introduction to Objects 17

Once a class is established, you can make as many objects of that class as you like, and then
manipulate those objects as if they are the elements that exist in the problem you are trying
to solve. Indeed, one of the challenges of object-oriented programming is to create a one-to-
one mapping between the elements in the problem space and objects in the solution space.

But how do you get an object to do useful work for you? There needs to be a way to make a
request of the object so that it will do something, such as complete a transaction, draw
something on the screen, or turn on a switch. And each object can satisfy only certain
requests. The requests you can make of an object are defined by its interface, and the type is
what determines the interface. A simple example might be a representation of a light bulb:

Light
Type Name
an()
off(]
Interface brightenc)
dirn (] -
Z

Light 1t = new Light();
1t.on();

The interface determines the requests that you can make for a particular object. However,
there must be code somewhere to satisfy that request. This, along with the hidden data,
comprises the implementation. From a procedural programming standpoint, it’s not that
complicated. A type has a method associated with each possible request, and when you make
a particular request to an object, that method is called. This process is usually summarized by
saying that you “send a message” (make a request) to an object, and the object figures out
what to do with that message (it executes code).

Here, the name of the type/class is Light, the name of this particular Light object is It, and
the requests that you can make of a Light object are to turn it on, turn it off, make it
brighter, or make it dimmer. You create a Light object by defining a “reference” (It) for that
object and calling new to request a new object of that type. To send a message to the object,
you state the name of the object and connect it to the message request with a period (dot).
From the standpoint of the user of a predefined class, that’s pretty much all there is to
programming with objects.

The preceding diagram follows the format of the Unified Modeling Language (UML). Each
class is represented by a box, with the type name in the top portion of the box, any data
members that you care to describe in the middle portion of the box, and the methods (the
functions that belong to this object, which receive any messages you send to that object) in
the bottom portion of the box. Often, only the name of the class and the public methods are
shown in UML design diagrams, so the middle portion is not shown, as in this case. If you're
interested only in the class name, then the bottom portion doesn’t need to be shown, either.

An object provides services

While you're trying to develop or understand a program design, one of the best ways to think
about objects is as “service providers.” Your program itself will provide services to the user,
and it will accomplish this by using the services offered by other objects. Your goal is to

18 Thinking in Java Bruce Eckel

produce (or even better, locate in existing code libraries) a set of objects that provide the
ideal services to solve your problem.

A way to start doing this is to ask, “If I could magically pull them out of a hat, what objects
would solve my problem right away?” For example, suppose you are creating a bookkeeping
program. You might imagine some objects that contain pre-defined bookkeeping input
screens, another set of objects that perform bookkeeping calculations, and an object that
handles printing of checks and invoices on all different kinds of printers. Maybe some of
these objects already exist, and for the ones that don’t, what would they look like? What
services would those objects provide, and what objects would they need to fulfill their
obligations? If you keep doing this, you will eventually reach a point where you can say
either, “That object seems simple enough to sit down and write” or “I'm sure that object must
exist already.” This is a reasonable way to decompose a problem into a set of objects.

Thinking of an object as a service provider has an additional benefit: It helps to improve the
cohesiveness of the object. High cohesion is a fundamental quality of software design: It
means that the various aspects of a software component (such as an object, although this
could also apply to a method or a library of objects) “fit together” well. One problem people
have when designing objects is cramming too much functionality into one object. For
example, in your check printing module, you may decide you need an object that knows all
about formatting and printing. You’ll probably discover that this is too much for one object,
and that what you need is three or more objects. One object might be a catalog of all the
possible check layouts, which can be queried for information about how to print a check. One
object or set of objects can be a generic printing interface that knows all about different kinds
of printers (but nothing about bookkeeping—this one is a candidate for buying rather than
writing yourself). And a third object could use the services of the other two to accomplish the
task. Thus, each object has a cohesive set of services it offers. In a good object-oriented
design, each object does one thing well, but doesn’t try to do too much. This not only allows
the discovery of objects that might be purchased (the printer interface object), but it also
produces new objects that might be reused somewhere else (the catalog of check layouts).

Treating objects as service providers is a great simplifying tool. This is useful not only during
the design process, but also when someone else is trying to understand your code or reuse an
object. If they can see the value of the object based on what service it provides, it makes it
much easier to fit it into the design.

The hidden implementation

It is helpful to break up the playing field into class creators (those who create new data types)
and client programmers* (the class consumers who use the data types in their applications).
The goal of the client programmer is to collect a toolbox full of classes to use for rapid
application development. The goal of the class creator is to build a class that exposes only
what’s necessary to the client programmer and keeps everything else hidden. Why? Because
if it’s hidden, the client programmer can’t access it, which means that the class creator can
change the hidden portion at will without worrying about the impact on anyone else. The
hidden portion usually represents the tender insides of an object that could easily be
corrupted by a careless or uninformed client programmer, so hiding the implementation
reduces program bugs.

In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the client programmer,
who is also a programmer, but one who is putting together an application by using your
library, possibly to build a bigger library. If all the members of a class are available to
everyone, then the client programmer can do anything with that class and there’s no way to
enforce rules. Even though you might really prefer that the client programmer not directly

4 I'm indebted to my friend Scott Meyers for this term.

Introduction to Objects 19

manipulate some of the members of your class, without access control there’s no way to
prevent it. Everything’s naked to the world.

So the first reason for access control is to keep client programmers’ hands off portions they
shouldn’t touch—parts that are necessary for the internal operation of the data type but not
part of the interface that users need in order to solve their particular problems. This is
actually a service to client programmers because they can easily see what’s important to them
and what they can ignore.

The second reason for access control is to allow the library designer to change the internal
workings of the class without worrying about how it will affect the client programmer. For
example, you might implement a particular class in a simple fashion to ease development,
and then later discover that you need to rewrite it in order to make it run faster. If the
interface and implementation are clearly separated and protected, you can accomplish this
easily.

Java uses three explicit keywords to set the boundaries in a class: public, private, and
protected. These access specifiers determine who can use the definitions that follow.
public means the following element is available to everyone. The private keyword, on the
other hand, means that no one can access that element except you, the creator of the type,
inside methods of that type. private is a brick wall between you and the client programmer.
Someone who tries to access a private member will get a compile-time error. The
protected keyword acts like private, with the exception that an inheriting class has access
to protected members, but not private members. Inheritance will be introduced shortly.

Java also has a “default” access, which comes into play if you don’t use one of the
aforementioned specifiers. This is usually called package access because classes can access
the members of other classes in the same package (library component), but outside of the
package those same members appear to be private.

Reusing the implementation

Once a class has been created and tested, it should (ideally) represent a useful unit of code. It
turns out that this reusability is not nearly so easy to achieve as many would hope; it takes
experience and insight to produce a reusable object design. But once you have such a design,
it begs to be reused. Code reuse is one of the greatest advantages that object-oriented
programming languages provide.

The simplest way to reuse a class is to just use an object of that class directly, but you can also
place an object of that class inside a new class. We call this “creating a member object.” Your
new class can be made up of any number and type of other objects, in any combination that
you need to achieve the functionality desired in your new class. Because you are composing a
new class from existing classes, this concept is called composition (if the composition
happens dynamically, it’s usually called aggregation). Composition is often referred to as a
“has-a” relationship, as in “A car has an engine.”

Car Engine

20 Thinking in Java Bruce Eckel

(This UML diagram indicates composition with the filled diamond, which states there is one
car. I will typically use a simpler form: just a line, without the diamond, to indicate an
association.5)

Composition comes with a great deal of flexibility. The member objects of your new class are
typically private, making them inaccessible to the client programmers who are using the
class. This allows you to change those members without disturbing existing client code. You
can also change the member objects at run time, to dynamically change the behavior of your
program. Inheritance, which is described next, does not have this flexibility since the
compiler must place compile-time restrictions on classes created with inheritance.

Because inheritance is so important in object-oriented programming, it is often highly
emphasized, and the new programmer can get the idea that inheritance should be used
everywhere. This can result in awkward and overly complicated designs. Instead, you should
first look to composition when creating new classes, since it is simpler and more flexible. If
you take this approach, your designs will be cleaner. Once you’ve had some experience, it will
be reasonably obvious when you need inheritance.

Inheritance

By itself, the idea of an object is a convenient tool. It allows you to package data and
functionality together by concept, so you can represent an appropriate problem-space idea
rather than being forced to use the idioms of the underlying machine. These concepts are
expressed as fundamental units in the programming language by using the class keyword.

It seems a pity, however, to go to all the trouble to create a class and then be forced to create
a brand new one that might have similar functionality. It’s nicer if we can take the existing
class, clone it, and then make additions and modifications to the clone. This is effectively
what you get with inheritance, with the exception that if the original class (called the base
class or superclass or parent class) is changed, the modified “clone” (called the derived class
or inherited class or subclass or child class) also reflects those changes.

Base

I

Derived

(The arrow in this UML diagram points from the derived class to the base class. As you will
see, there is commonly more than one derived class.)

A type does more than describe the constraints on a set of objects; it also has a relationship
with other types. Two types can have characteristics and behaviors in common, but one type
may contain more characteristics than another and may also handle more messages (or
handle them differently). Inheritance expresses this similarity between types by using the
concept of base types and derived types. A base type contains all of the characteristics and
behaviors that are shared among the types derived from it. You create a base type to

5 This is usually enough detail for most diagrams, and you don’t need to get specific about whether you’re using
aggregation or composition.

Introduction to Objects 21

represent the core of your ideas about some objects in your system. From the base type, you
derive other types to express the different ways that this core can be realized.

For example, a trash-recycling machine sorts pieces of trash. The base type is “trash”, and
each piece of trash has a weight, a value, and so on, and can be shredded, melted, or
decomposed. From this, more specific types of trash are derived that may have additional
characteristics (a bottle has a color) or behaviors (an aluminum can may be crushed, a steel
can is magnetic). In addition, some behaviors may be different (the value of paper depends
on its type and condition). Using inheritance, you can build a type hierarchy that expresses
the problem you’re trying to solve in terms of its types.

A second example is the classic “shape” example, perhaps used in a computer-aided design
system or game simulation. The base type is “shape,” and each shape has a size, a color, a
position, and so on. Each shape can be drawn, erased, moved, colored, etc. From this, specific
types of shapes are derived (inherited)—circle, square, triangle, and so on—each of which
may have additional characteristics and behaviors. Certain shapes can be flipped, for
example. Some behaviors may be different, such as when you want to calculate the area of a
shape. The type hierarchy embodies both the similarities and differences between the shapes.

Shape

draw i)
erasel]
rhovel)
getColor)
setColor)

il

Circle Square Triangle

Casting the solution in the same terms as the problem is very useful because you don’t need a
lot of intermediate models to get from a description of the problem to a description of the
solution. With objects, the type hierarchy is the primary model, so you go directly from the
description of the system in the real world to the description of the system in code. Indeed,
one of the difficulties people have with object-oriented design is that it’s too simple to get
from the beginning to the end. A mind trained to look for complex solutions can initially be
stumped by this simplicity.

When you inherit from an existing type, you create a new type. This new type contains not
only all the members of the existing type (although the private ones are hidden away and
inaccessible), but more importantly it duplicates the interface of the base class. That is, all
the messages you can send to objects of the base class you can also send to objects of the
derived class. Since we know the type of a class by the messages we can send to it, this means
that the derived class is the same type as the base class. In the previous example, “A circle is
a shape.” This type equivalence via inheritance is one of the fundamental gateways in
understanding the meaning of object-oriented programming.

Since both the base class and derived class have the same fundamental interface, there must
be some implementation to go along with that interface. That is, there must be some code to
execute when an object receives a particular message. If you simply inherit a class and don’t

22

Thinking in Java Bruce Eckel

do anything else, the methods from the base-class interface come right along into the derived
class. That means objects of the derived class have not only the same type, they also have the

same behavior, which isn’t particularly interesting.

You have two ways to differentiate your new derived class from the original base class. The

first is quite straightforward: You simply add brand new methods to the derived class. These

new methods are not part of the base-class interface. This means that the base class simply

didn’t do as much as you wanted it to, so you added more methods. This simple and primitive

use for inheritance is, at times, the perfect solution to your problem. However, you should

look closely for the possibility that your base class might also need these additional methods.

This process of discovery and iteration of your design happens regularly in object-oriented

programming.

Shape

drawi)
erasel]
movel]
getsolor])
setColor)

i

Circle

Square

Triangle

Although inheritance may sometimes imply (especially in Java, where the keyword for
inheritance is extends) that you are going to add new methods to the interface, that’s not
necessarily true. The second and more important way to differentiate your new class is to
change the behavior of an existing base-class method. This is referred to as overriding that

method.

Flipvfert cal()
FlipHorizontal [

Introduction to Objects

23

Shape

dAraw (]
erasel]
rmovel]
getZalor()
setCaolar()

A\

Circle Square Triangle
draw) Araw () drawi()
erasel] erasel] erasel]

To override a method, you simply create a new definition for the method in the derived class.
You're saying, “I'm using the same interface method here, but I want it to do something
different for my new type.”

Is-a vs. is-like-a relationships

There’s a certain debate that can occur about inheritance: Should inheritance override only
baseclass methods (and not add new methods that aren’t in the base class)? This would mean
that the derived class is exactly the same type as the base class since it has exactly the same
interface. As a result, you can exactly substitute an object of the derived class for an object of
the base class. This can be thought of as pure substitution, and it’s often referred to as the
substitution principle. In a sense, this is the ideal way to treat inheritance. We often refer to
the relationship between the base class and derived classes in this case as an is-a
relationship, because you can say, “A circle is a shape.” A test for inheritance is to determine
whether you can state the is-a relationship about the classes and have it make sense.

There are times when you must add new interface elements to a derived type, thus extending
the interface. The new type can still be substituted for the base type, but the substitution isn’t
perfect because your new methods are not accessible from the base type. This can be
described as an islike-a relationship (my term). The new type has the interface of the old type
but it also contains other methods, so you can’t really say it’s exactly the same. For example,
consider an air conditioner. Suppose your house is wired with all the controls for cooling;
that is, it has an interface that allows you to control cooling. Imagine that the air conditioner
breaks down and you replace it with a heat pump, which can both heat and cool. The heat
pump is-like-an air conditioner, but it can do more. Because the control system of your house
is designed only to control cooling, it is restricted to communication with the cooling part of
the new object. The interface of the new object has been extended, and the existing system
doesn’t know about anything except the original interface.

Thinking in Java Bruce Eckel

Thermostat Controls

Coocling System
lowerTemperatire(] cool (]

1

Air Conditioner Heaat Pump

coal() cool(])
heat()

Of course, once you see this design it becomes clear that the base class “cooling system” is not
general enough, and should be renamed to “temperature control system” so that it can also
include heating—at which point the substitution principle will work. However, this diagram
is an example of what can happen with design in the real world.

When you see the substitution principle it’s easy to feel like this approach (pure substitution)
is the only way to do things, and in fact it is nice if your design works out that way. But you'll
find that there are times when it’s equally clear that you must add new methods to the
interface of a derived class. With inspection both cases should be reasonably obvious.

Interchangeable objects
with polymorphism

When dealing with type hierarchies, you often want to treat an object not as the specific type
that it is, but instead as its base type. This allows you to write code that doesn’t depend on
specific types. In the shape example, methods manipulate generic shapes, unconcerned about
whether they’re circles, squares, triangles, or some shape that hasn’t even been defined yet.
All shapes can be drawn, erased, and moved, so these methods simply send a message to a
shape object; they don’t worry about how the object copes with the message.

Such code is unaffected by the addition of new types, and adding new types is the most
common way to extend an object-oriented program to handle new situations. For example,
you can derive a new subtype of shape called pentagon without modifying the methods that
deal only with generic shapes. This ability to easily extend a design by deriving new subtypes
is one of the essential ways to encapsulate change. This greatly improves designs while
reducing the cost of software maintenance.

There’s a problem, however, with attempting to treat derived-type objects as their generic
base types (circles as shapes, bicycles as vehicles, cormorants as birds, etc.). If a method is
going to tell a generic shape to draw itself, or a generic vehicle to steer, or a generic bird to
move, the compiler cannot know at compile time precisely what piece of code will be
executed. That’s the whole point—when the message is sent, the programmer doesn’t want to
know what piece of code will be executed; the draw method can be applied equally to a circle,
a square, or a triangle, and the object will execute the proper code depending on its specific

type.

If you don’t have to know what piece of code will be executed, then when you add a new
subtype, the code it executes can be different without requiring changes to the method that

Introduction to Objects 25

calls it. Therefore, the compiler cannot know precisely what piece of code is executed, so what
does it do?

For example, in the following diagram the BirdController object just works with generic
Bird objects and does not know what exact type they are. This is convenient from
BirdController’s perspective because it doesn’t have to write special code to determine the
exact type of Bird it’s working with or that Bird’s behavior. So how does it happen that,
when move() is called while ignoring the specific type of Bird, the right behavior will occur
(a Goose walks, flies, or swims, and a Penguin walks or swims)?

BirdC ontroller Bird

relocate() move()

What happens when
move() is called? ﬂ

Goosae Penguin

move(} move()

The answer is the primary twist in object-oriented programming: The compiler cannot make
a function call in the traditional sense. The function call generated by a non-OOP compiler
causes what is called early binding, a term you may not have heard before because you've
never thought about it any other way. It means the compiler generates a call to a specific
function name, and the runtime system resolves this call to the absolute address of the code
to be executed. In OOP, the program cannot determine the address of the code until run
time, so some other scheme is necessary when a message is sent to a generic object.

To solve the problem, object-oriented languages use the concept of late binding. When you
send a message to an object, the code being called isn’t determined until run time. The
compiler does ensure that the method exists and performs type checking on the arguments
and return value, but it doesn’t know the exact code to execute.

To perform late binding, Java uses a special bit of code in lieu of the absolute call. This code
calculates the address of the method body, using information stored in the object (this
process is covered in great detail in the Polymorphism chapter). Thus, each object can
behave differently according to the contents of that special bit of code. When you send a
message to an object, the object actually does figure out what to do with that message.

In some languages you must explicitly state that you want a method to have the flexibility of
latebinding properties (C++ uses the virtual keyword to do this). In these languages, by
default, methods are not dynamically bound. In Java, dynamic binding is the default
behavior and you don’t need to remember to add any extra keywords in order to get
polymorphism.

Consider the shape example. The family of classes (all based on the same uniform interface)
was diagrammed earlier in this chapter. To demonstrate polymorphism, we want to write a
single piece of code that ignores the specific details of type and talks only to the base class.
That code is decoupled from type-specific information and thus is simpler to write and easier
to understand. And, if a new type—a Hexagon, for example—is added through inheritance,
the code you write will work just as well for the new type of Shape as it did on the existing
types. Thus, the program is extensible.

26

Thinking in Java Bruce Eckel

If you write a method in Java (as you will soon learn how to do):

void doSomething(Shape shape) {
shape.erase();
//
shape.draw() ;

This method speaks to any Shape, so it is independent of the specific type of object that it’s
drawing and erasing. If some other part of the program uses the doSomething() method:

Circle circle = new Circle();
Triangle triangle = new Triangle();
Line line= new Line();
doSomething(circle);
doSomething(triangle);
doSomething(line);

The calls to doSomething() automatically work correctly, regardless of the exact type of
the object.

This is a rather amazing trick. Consider the line:
doSomething(circle);

What’s happening here is that a Circle is being passed into a method that’s expecting a
Shape. Since a Circle is a Shape it can be treated as one by doSomething(). That is, any
message that doSomething() can send to a Shape, a Circle can accept. So it is a
completely safe and logical thing to do.

We call this process of treating a derived type as though it were its base type upcasting. The
name cast is used in the sense of casting into a mold and the up comes from the way the
inheritance diagram is typically arranged, with the base type at the top and the derived
classes fanning out downward. Thus, casting to a base type is moving up the inheritance
diagram: “upcasting.”

n Shape
I
"Upcasting' !
st 1
* Circle Squarea Triangle

An object-oriented program contains some upcasting somewhere, because that’s how you
decouple yourself from knowing about the exact type you're working with. Look at the code
in doSomething():

shape.erase();
VA
shape.draw() ;

Introduction to Objects 27

Notice that it doesn’t say, “If you're a Circle, do this, if you're a Square, do that, etc.” If you
write that kind of code, which checks for all the possible types that a Shape can actually be,
it’s messy and you need to change it every time you add a new kind of Shape. Here, you just
say, “You're a shape, I know you can erase() and draw() yourself, do it, and take care of
the details correctly.”

What’s impressive about the code in doSomething() is that, somehow, the right thing
happens. Calling draw() for Circle causes different code to be executed than when calling
draw() for a Square or a Line, but when the draw() message is sent to an anonymous
Shape, the correct behavior occurs based on the actual type of the Shape. This is amazing
because, as mentioned earlier, when the Java compiler is compiling the code for
doSomething(), it cannot know exactly what types it is dealing with. So ordinarily, you’d
expect it to end up calling the version of erase() and draw() for the base class Shape, and
not for the specific Circle, Square, or Line. And yet the right thing happens because of
polymorphism. The compiler and runtime system handle the details; all you need to know
right now is that it does happen, and more importantly, how to design with it. When you
send a message to an object, the object will do the right thing, even when upcasting is
involved.

The singly rooted hierarchy

One of the issues in OOP that has become especially prominent since the introduction of C++
is whether all classes should ultimately be inherited from a single base class. In Java (as with
virtually all other OOP languages except for C++) the answer is yes, and the name of this
ultimate base class is simply Object. It turns out that the benefits of the singly rooted
hierarchy are many.

All objects in a singly rooted hierarchy have an interface in common, so they are all
ultimately the same fundamental type. The alternative (provided by C++) is that you don’t
know that everything is the same basic type. From a backward-compatibility standpoint this
fits the model of C better and can be thought of as less restrictive, but when you want to do
full-on objectoriented programming you must then build your own hierarchy to provide the
same convenience that’s built into other OOP languages. And in any new class library you
acquire, some other incompatible interface will be used. It requires effort (and possibly
multiple inheritance) to work the new interface into your design. Is the extra “flexibility” of
C++ worth it? If you need it—if you have a large investment in C—it’s quite valuable. If you're
starting from scratch, other alternatives such as Java can often be more productive.

All objects in a singly rooted hierarchy can be guaranteed to have certain functionality. You
know you can perform certain basic operations on every object in your system. All objects can
easily be created on the heap, and argument passing is greatly simplified.

A singly rooted hierarchy makes it much easier to implement a garbage collector, which is
one of the fundamental improvements of Java over C++. And since information about the
type of an object is guaranteed to be in all objects, you’ll never end up with an object whose
type you cannot determine. This is especially important with system-level operations, such as
exception handling, and to allow greater flexibility in programming.

Containers

In general, you don’t know how many objects you're going to need to solve a particular
problem, or how long they will last. You also don’t know how to store those objects. How can
you know how much space to create if that information isn’t known until run time?

28 Thinking in Java Bruce Eckel

The solution to most problems in object-oriented design seems flippant: You create another
type of object. The new type of object that solves this particular problem holds references to
other objects. Of course, you can do the same thing with an array, which is available in most
languages. But this new object, generally called a container (also called a collection, but the
Java library uses that term in a different sense so this book will use “container”), will expand
itself whenever necessary to accommodate everything you place inside it. So you don’t need
to know how many objects you're going to hold in a container. Just create a container object
and let it take care of the details.

Fortunately, a good OOP language comes with a set of containers as part of the package. In
C++, it’s part of the Standard C++ Library and is often called the Standard Template Library
(STL). Smalltalk has a very complete set of containers. Java also has numerous containers in
its standard library. In some libraries, one or two generic containers is considered good
enough for all needs, and in others (Java, for example) the library has different types of
containers for different needs: several different kinds of List classes (to hold sequences),
Maps (also known as associative arrays, to associate objects with other objects), Sets (to
hold one of each type of object), and more components such as queues, trees, stacks, etc.

From a design standpoint, all you really want is a container that can be manipulated to solve
your problem. If a single type of container satisfied all of your needs, there’d be no reason to
have different kinds. There are two reasons that you need a choice of containers. First,
containers provide different types of interfaces and external behavior. A stack has a different
interface and behavior than a queue, which is different from a set or a list. One of these might
provide a more flexible solution to your problem than the other. Second, different containers
have different efficiencies for certain operations. For example, there are two basic types of
List: ArrayList and LinkedList. Both are simple sequences that can have identical
interfaces and external behaviors. But certain operations can have significantly different
costs. Randomly accessing elements in an ArrayL.ist is a constant-time operation; it takes
the same amount of time regardless of the element you select. However, in a LinkedList it is
expensive to move through the list to randomly select an element, and it takes longer to find
an element that is farther down the list. On the other hand, if you want to insert an element
in the middle of a sequence, it’s cheaper in a LinkedList than in an ArrayL.ist. These and
other operations have different efficiencies depending on the underlying structure of the
sequence. You might start building your program with a LinkedList and, when tuning for
performance, change to an ArrayL.ist. Because of the abstraction via the interface List, you
can change from one to the other with minimal impact on your code.

Parameterized types (generics)

Before Java SE5, containers held the one universal type in Java: Object. The singly rooted
hierarchy means that everything is an Object, so a container that holds Objects can hold
anything.® This made containers easy to reuse.

To use such a container, you simply add object references to it and later ask for them back.
But, since the container held only Objects, when you added an object reference into the
container it was upcast to Object, thus losing its character. When fetching it back, you got an
Object reference, and not a reference to the type that you put in. So how do you turn it back
into something that has the specific type of the object that you put into the container?

Here, the cast is used again, but this time you’re not casting up the inheritance hierarchy to a
more general type. Instead, you cast down the hierarchy to a more specific type. This manner
of casting is called downcasting. With upcasting, you know, for example, that a Circleis a
type of Shape so it’s safe to upcast, but you don’t know that an Object is necessarily a

6 They do not hold primitives, but Java SE5 autoboxing makes this restriction almost a non-issue. This is discussed in
detail later in the book.

Introduction to Objects 29

Circle or a Shape so it’s hardly safe to downcast unless you know exactly what you’re
dealing with.

It’s not completely dangerous, however, because if you downcast to the wrong thing you’ll get
a runtime error called an exception, which will be described shortly. When you fetch object
references from a container, though, you must have some way to remember exactly what they
are so you can perform a proper downcast.

Downcasting and the runtime checks require extra time for the running program and extra
effort from the programmer. Wouldn'’t it make sense to somehow create the container so that
it knows the types that it holds, eliminating the need for the downcast and a possible
mistake? The solution is called a parameterized type mechanism. A parameterized type is a
class that the compiler can automatically customize to work with particular types. For
example, with a parameterized container, the compiler could customize that container so that
it would accept only Shapes and fetch only Shapes.

One of the big changes in Java SEj5 is the addition of parameterized types, called generics in
Java. You'll recognize the use of generics by the angle brackets with types inside; for example,
an ArrayL.ist that holds Shape can be created like this:

ArrayList<Shape> shapes = new ArraylList<Shape>();

There have also been changes to many of the standard library components in order to take
advantage of generics. As you will see, generics have an impact on much of the code in this
book.

ODbject creation & lifetime

One critical issue when working with objects is the way they are created and destroyed. Each
object requires resources, most notably memory, in order to exist. When an object is no
longer needed it must be cleaned up so that these resources are released for reuse. In simple
programming situations the question of how an object is cleaned up doesn’t seem too
challenging: You create the object, use it for as long as it’s needed, and then it should be
destroyed. However, it’s not hard to encounter situations that are more complex.

Suppose, for example, you are designing a system to manage air traffic for an airport. (The
same model might also work for managing crates in a warehouse, or a video rental system, or
a kennel for boarding pets.) At first it seems simple: Make a container to hold airplanes, then
create a new airplane and place it in the container for each airplane that enters the air-traffic-
control zone. For cleanup, simply clean up the appropriate airplane object when a plane
leaves the zone.

But perhaps you have some other system to record data about the planes; perhaps data that
doesn’t require such immediate attention as the main controller function. Maybe it’s a record
of the flight plans of all the small planes that leave the airport. So you have a second
container of small planes, and whenever you create a plane object you also put it in this
second container if it’s a small plane. Then some background process performs operations on
the objects in this container during idle moments.

Now the problem is more difficult: How can you possibly know when to destroy the objects?
When you’re done with the object, some other part of the system might not be. This same
problem can arise in a number of other situations, and in programming systems (such as
C++) in which you must explicitly delete an object when you’re done with it this can become
quite complex.

30

Thinking in Java Bruce Eckel

Where is the data for an object and how is the lifetime of the object controlled? C++ takes the
approach that control of efficiency is the most important issue, so it gives the programmer a
choice. For maximum runtime speed, the storage and lifetime can be determined while the
program is being written, by placing the objects on the stack (these are sometimes called
automatic or scoped variables) or in the static storage area. This places a priority on the
speed of storage allocation and release, and this control can be very valuable in some
situations. However, you sacrifice flexibility because you must know the exact quantity,
lifetime, and type of objects while you’re writing the program. If you are trying to solve a
more general problem such as computer-aided design, warehouse management, or air-traffic
control, this is too restrictive.

The second approach is to create objects dynamically in a pool of memory called the heap. In
this approach, you don’t know until run time how many objects you need, what their lifetime
is, or what their exact type is. Those are determined at the spur of the moment while the
program is running. If you need a new object, you simply make it on the heap at the point
that you need it. Because the storage is managed dynamically, at run time, the amount of
time required to allocate storage on the heap can be noticeably longer than the time to create
storage on the stack. Creating storage on the stack is often a single assembly instruction to
move the stack pointer down and another to move it back up. The time to create heap storage
depends on the design of the storage mechanism.

The dynamic approach makes the generally logical assumption that objects tend to be
complicated, so the extra overhead of finding storage and releasing that storage will not have
an important impact on the creation of an object. In addition, the greater flexibility is
essential to solve the general programming problem.

Java uses dynamic memory allocation, exclusively.? Every time you want to create an object,
you use the new operator to build a dynamic instance of that object.

There’s another issue, however, and that’s the lifetime of an object. With languages that allow
objects to be created on the stack, the compiler determines how long the object lasts and can
automatically destroy it. However, if you create it on the heap the compiler has no knowledge
of its lifetime. In a language like C++, you must determine programmatically when to destroy
the object, which can lead to memory leaks if you don’t do it correctly (and this is a common
problem in C++ programs). Java provides a feature called a garbage collector that
automatically discovers when an object is no longer in use and destroys it. A garbage
collector is much more convenient because it reduces the number of issues that you must
track and the code you must write. More importantly, the garbage collector provides a much
higher level of insurance against the insidious problem of memory leaks, which has brought
many a C++ project to its knees.

With Java, the garbage collector is designed to take care of the problem of releasing the
memory (although this doesn’t include other aspects of cleaning up an object). The garbage
collector “knows” when an object is no longer in use, and it then automatically releases the
memory for that object. This, combined with the fact that all objects are inherited from the
single root class Object and that you can create objects only one way—on the heap—makes
the process of programming in Java much simpler than programming in C++. You have far
fewer decisions to make and hurdles to overcome.

Exception handling: dealing with errors

Ever since the beginning of programming languages, error handling has been a particularly
difficult issue. Because it’s so hard to design a good error-handling scheme, many languages
simply ignore the issue, passing the problem on to library designers who come up with

7 Primitive types, which you'll learn about later, are a special case.

Introduction to Objects 31

halfway measures that work in many situations but that can easily be circumvented, generally
by just ignoring them. A major problem with most error-handling schemes is that they rely
on programmer vigilance in following an agreed-upon convention that is not enforced by the
language. If the programmer is not vigilant—often the case if they are in a hurry—these
schemes can easily be forgotten.

Exception handling wires error handling directly into the programming language and
sometimes even the operating system. An exception is an object that is “thrown” from the site
of the error and can be “caught” by an appropriate exception handler designed to handle that
particular type of error. It’s as if exception handling is a different, parallel path of execution
that can be taken when things go wrong. And because it uses a separate execution path, it
doesn’t need to interfere with your normally executing code. This tends to make that code
simpler to write because you aren’t constantly forced to check for errors. In addition, a
thrown exception is unlike an error value that’s returned from a method or a flag that’s set by
a method in order to indicate an error condition—these can be ignored. An exception cannot
be ignored, so it’s guaranteed to be dealt with at some point. Finally, exceptions provide a
way to reliably recover from a bad situation. Instead of just exiting the program, you are
often able to set things right and restore execution, which produces much more robust
programs.

Java’s exception handling stands out among programming languages, because in Java,
exception handling was wired in from the beginning and you’re forced to use it. It is the
single acceptable way to report errors. If you don’t write your code to properly handle
exceptions, you'll get a compile-time error message. This guaranteed consistency can
sometimes make error handling much easier.

It’s worth noting that exception handling isn’t an object-oriented feature, although in object-
oriented languages the exception is normally represented by an object. Exception handling
existed before object-oriented languages.

Concurrent programming

A fundamental concept in computer programming is the idea of handling more than one task
at a time. Many programming problems require that the program stop what it’s doing, deal
with some other problem, and then return to the main process. The solution has been
approached in many ways. Initially, programmers with low-level knowledge of the machine
wrote interrupt service routines, and the suspension of the main process was initiated
through a hardware interrupt. Although this worked well, it was difficult and non-portable,
so it made moving a program to a new type of machine slow and expensive.

Sometimes, interrupts are necessary for handling time-critical tasks, but there’s a large class
of problems in which you’re simply trying to partition the problem into separately running
pieces (tasks) so that the whole program can be more responsive. Within a program, these
separately running pieces are called threads, and the general concept is called concurrency.
A common example of concurrency is the user interface. By using tasks, a user can press a
button and get a quick response rather than being forced to wait until the program finishes
its current task.

Ordinarily, tasks are just a way to allocate the time of a single processor. But if the operating
system supports multiple processors, each task can be assigned to a different processor, and
they can truly run in parallel. One of the convenient features of concurrency at the language
level is that the programmer doesn’t need to worry about whether there are many processors
or just one. The program is logically divided into tasks, and if the machine has more than one
processor, then the program runs faster, without any special adjustments.

All this makes concurrency sound pretty simple. There is a catch: shared resources. If you
have more than one task running that’s expecting to access the same resource, you have a

32

Thinking in Java Bruce Eckel

problem. For example, two processes can’t simultaneously send information to a printer. To
solve the problem, resources that can be shared, such as the printer, must be locked while
they are being used. So a task locks a resource, completes its task, and then releases the lock
so that someone else can use the resource.

Java’s concurrency is built into the language, and Java SE5 has added significant additional
library support.

Java and the Internet

If Java is, in fact, yet another computer programming language, you may question why it is
so important and why it is being promoted as a revolutionary step in computer
programming. The answer isn’t immediately obvious if you're coming from a traditional
programming perspective. Although Java is very useful for solving traditional standalone
programming problems, it is also important because it solves programming problems for the
World Wide Web.

What is the Web?

» «

The Web can seem a bit of a mystery at first, with all this talk of “surfing,” “presence,” and
“home pages.” It’s helpful to step back and see what it really is, but to do this you must
understand client/server systems, another aspect of computing that’s full of confusing issues.

Client/server computing

The primary idea of a client/server system is that you have a central repository of
information— some kind of data, usually in a database—that you want to distribute on
demand to some set of people or machines. A key to the client/server concept is that the
repository of information is centrally located so that it can be changed and so that those
changes will propagate out to the information consumers. Taken together, the information
repository, the software that distributes the information, and the machine(s) where the
information and software reside are called “the server.” The software that resides on the
consumer machine, communicates with the server, fetches the information, processes it, and
then displays it on the consumer machine is called the client.

The basic concept of client/server computing, then, is not so complicated. The problems arise
because you have a single server trying to serve many clients at once. Generally, a database
management system is involved, so the designer “balances” the layout of data into tables for
optimal use. In addition, systems often allow a client to insert new information into a server.
This means you must ensure that one client’s new data doesn’t walk over another client’s new
data, or that data isn’t lost in the process of adding it to the database (this is called
transaction processing). As client software changes, it must be built, debugged, and installed
on the client machines, which turns out to be more complicated and expensive than you
might think. It’s especially problematic to support multiple types of computers and operating
systems. Finally, there’s the all-important performance issue: You might have hundreds of
clients making requests of your server at any moment, so a small delay can be critical. To
minimize latency, programmers work hard to offload processing tasks, often to the client
machine, but sometimes to other machines at the server site, using so-called middleware.
(Middleware is also used to improve maintainability.)

The simple idea of distributing information has so many layers of complexity that the whole
problem can seem hopelessly enigmatic. And yet it’s crucial: Client/server computing
accounts for roughly half of all programming activities. It’s responsible for everything from
taking orders and credit-card transactions to the distribution of any kind of data—stock
market, scientific, government, you name it. What we’ve come up with in the past is

Introduction to Objects 33

individual solutions to individual problems, inventing a new solution each time. These were
hard to create and hard to use, and the user had to learn a new interface for each one. The
entire client/server problem needed to be solved in a big way.

The Web as a giant server

The Web is actually one giant client/server system. It’s a bit worse than that, since you have
all the servers and clients coexisting on a single network at once. You don’t need to know
that, because all you care about is connecting to and interacting with one server at a time
(even though you might be hopping around the world in your search for the correct server).

Initially it was a simple one-way process. You made a request of a server and it handed you a
file, which your machine’s browser software (i.e., the client) would interpret by formatting
onto your local machine. But in short order people began wanting to do more than just
deliver pages from a server. They wanted full client/server capability so that the client could
feed information back to the server, for example, to do database lookups on the server, to add
new information to the server, or to place an order (which requires special security
measures). These are the changes we’ve been seeing in the development of the Web.

The Web browser was a big step forward: the concept that one piece of information can be
displayed on any type of computer without change. However, the original browsers were still
rather primitive and rapidly bogged down by the demands placed on them. They weren’t
particularly interactive, and tended to clog up both the server and the Internet because
whenever you needed to do something that required programming you had to send
information back to the server to be processed. It could take many seconds or minutes to find
out you had misspelled something in your request. Since the browser was just a viewer it
couldn’t perform even the simplest computing tasks. (On the other hand, it was safe, because
it couldn’t execute any programs on your local machine that might contain bugs or viruses.)

To solve this problem, different approaches have been taken. To begin with, graphics
standards have been enhanced to allow better animation and video within browsers. The
remainder of the problem can be solved only by incorporating the ability to run programs on
the client end, under the browser. This is called client-side programming.

Client-side programming

The Web’s initial server-browser design provided for interactive content, but the interactivity
was completely provided by the server. The server produced static pages for the client
browser, which would simply interpret and display them. Basic HyperText Markup
Language (HTML) contains simple mechanisms for data gathering: text-entry boxes, check
boxes, radio boxes, lists and dropdown lists, as well as a button that could only be
programmed to reset the data on the form or “submit” the data on the form back to the
server. This submission passes through the Common Gateway Interface (CGI) provided on
all Web servers. The text within the submission tells CGI what to do with it. The most
common action is to run a program located on the server in a directory that’s typically called
“cgi-bin.” (If you watch the address window at the top of your browser when you push a
button on a Web page, you can sometimes see “cgi-bin” within all the gobbledygook there.)
These programs can be written in most languages. Perl has been a common choice because it
is designed for text manipulation and is interpreted, so it can be installed on any server
regardless of processor or operating system. However, Python (www.Python.org) has been
making inroads because of its greater power and simplicity.

Many powerful Web sites today are built strictly on CGI, and you can in fact do nearly
anything with CGI. However, Web sites built on CGI programs can rapidly become overly
complicated to maintain, and there is also the problem of response time. The response of a
CGI program depends on how much data must be sent, as well as the load on both the server
and the Internet. (On top of this, starting a CGI program tends to be slow.) The initial

34

Thinking in Java Bruce Eckel

designers of the Web did not foresee how rapidly this bandwidth would be exhausted for the
kinds of applications people developed. For example, any sort of dynamic graphing is nearly
impossible to perform with consistency because a Graphics Interchange Format (GIF) file
must be created and moved from the server to the client for each version of the graph. In
addition, you’ve no doubt experienced the process of data validation for a Web input form.
You press the submit button on a page; the data is shipped back to the server; the server
starts a CGI program that discovers an error, formats an HTML page informing you of the
error, and then sends the page back to you; you must then back up a page and try again. Not
only is this slow, it’s inelegant.

The solution is client-side programming. Most desktop computers that run Web browsers are
powerful engines capable of doing vast work, and with the original static HTML approach
they are sitting there, just idly waiting for the server to dish up the next page. Client-side
programming means that the Web browser is harnessed to do whatever work it can, and the
result for the user is a much speedier and more interactive experience at your Web site.

The problem with discussions of client-side programming is that they aren’t very different
from discussions of programming in general. The parameters are almost the same, but the
platform is different; a Web browser is like a limited operating system. In the end, you must
still program, and this accounts for the dizzying array of problems and solutions produced by
client-side programming. The rest of this section provides an overview of the issues and
approaches in client-side programming.

Plug-ins

One of the most significant steps forward in client-side programming is the development of
the plug-in. This is a way for a programmer to add new functionality to the browser by
downloading a piece of code that plugs itself into the appropriate spot in the browser. It tells
the browser, “From now on you can perform this new activity.” (You need to download the
plug-in only once.) Some fast and powerful behavior is added to browsers via plug-ins, but
writing a plug-in is not a trivial task, and isn’t something you’d want to do as part of the
process of building a particular site. The value of the plug-in for client-side programming is
that it allows an expert programmer to develop extensions and add those extensions to a
browser without the permission of the browser manufacturer. Thus, plug-ins provide a “back
door” that allows the creation of new client-side programming languages (although not all
languages are implemented as plug-ins).

Scripting languages

Plug-ins resulted in the development of browser scripting languages. With a scripting
language, you embed the source code for your client-side program directly into the HTML
page, and the plug-in that interprets that language is automatically activated while the HTML
page is being displayed. Scripting languages tend to be reasonably easy to understand and,
because they are simply text that is part of an HTML page, they load very quickly as part of
the single server hit required to procure that page. The trade-off is that your code is exposed
for everyone to see (and steal). Generally, however, you aren’t doing amazingly sophisticated
things with scripting languages, so this is not too much of a hardship.

One scripting language that you can expect a Web browser to support without a plug-in is
JavaScript (this has only a passing resemblance to Java and you’ll have to climb an additional
learning curve to use it. It was named that way just to grab some of Java’s marketing
momentum). Unfortunately, most Web browsers originally implemented JavaScript in a
different way from the other Web browsers, and even from other versions of themselves. The
standardization of JavaScript in the form of ECMAScript has helped, but it has taken a long
time for the various browsers to catch up (and it didn’t help that Microsoft was pushing its
own agenda in the form of VBScript, which also had vague similarities to JavaScript). In
general, you must program in a kind of least-common-denominator form of JavaScript in

Introduction to Objects 35

order to be able to run on all browsers. Dealing with errors and debugging JavaScript can
only be described as a mess. As proof of its difficulty, only recently has anyone created a truly
complex piece of JavaScript (Google, in GMail), and that required excessive dedication and
expertise.

This points out that the scripting languages used inside Web browsers are really intended to
solve specific types of problems, primarily the creation of richer and more interactive
graphical user interfaces (GUIs). However, a scripting language might solve 80 percent of the
problems encountered in client-side programming. Your problems might very well fit
completely within that 80 percent, and since scripting languages can allow easier and faster
development, you should probably consider a scripting language before looking at a more
involved solution such as Java programming.

Java

If a scripting language can solve 80 percent of the client-side programming problems, what
about the other 20 percent—the “really hard stuff”? Java is a popular solution for this. Not
only is it a powerful programming language built to be secure, cross-platform, and
international, but Java is being continually extended to provide language features and
libraries that elegantly handle problems that are difficult in traditional programming
languages, such as concurrency, database access, network programming, and distributed
computing. Java allows client-side programming via the applet and with Java Web Start.

An applet is a mini-program that will run only under a Web browser. The applet is
downloaded automatically as part of a Web page (just as, for example, a graphic is
automatically downloaded). When the applet is activated, it executes a program. This is part
of its beauty—it provides you with a way to automatically distribute the client software from
the server at the time the user needs the client software, and no sooner. The user gets the
latest version of the client software without fail and without difficult reinstallation. Because
of the way Java is designed, the programmer needs to create only a single program, and that
program automatically works with all computers that have browsers with built-in Java
interpreters. (This safely includes the vast majority of machines.) Since Java is a full-fledged
programming language, you can do as much work as possible on the client before and after
making requests of the server. For example, you won’t need to send a request form across the
Internet to discover that you've gotten a date or some other parameter wrong, and your client
computer can quickly do the work of plotting data instead of waiting for the server to make a
plot and ship a graphic image back to you. Not only do you get the immediate win of speed
and responsiveness, but the general network traffic and load on servers can be reduced,
preventing the entire Internet from slowing down.

Alternatives

To be honest, Java applets have not particularly lived up to their initial fanfare. When Java
first appeared, what everyone seemed most excited about was applets, because these would
finally allow serious client-side programmability, to increase responsiveness and decrease
bandwidth requirements for Internet-based applications. People envisioned vast
possibilities.

Indeed, you can find some very clever applets on the Web. But the overwhelming move to
applets never happened. The biggest problem was probably that the 10 MB download
necessary to install the Java Runtime Environment (JRE) was too scary for the average user.
The fact that Microsoft chose not to include the JRE with Internet Explorer may have sealed
its fate. In any event, Java applets didn’t happen on a large scale.

Nonetheless, applets and Java Web Start applications are still valuable in some situations.
Anytime you have control over user machines, for example within a corporation, it is

36

Thinking in Java Bruce Eckel

reasonable to distribute and update client applications using these technologies, and this can
save considerable time, effort, and money, especially if you need to do frequent updates.

In the Graphical User Interfaces chapter, we will look at one promising new technology,
Macromedia’s Flex, which allows you to create Flash-based applet-equivalents. Because the
Flash Player is available on upwards of 98 percent of all Web browsers (including Windows,
Linux and the Mac) it can be considered an accepted standard. Installing or upgrading the
Flash Player is quick and easy. The ActionScript language is based on ECMAScript so it is
reasonably familiar, but Flex allows you to program without worrying about browser
specifics—thus it is far more attractive than JavaScript. For client-side programming, this is
an alternative worth considering.

.NET and C#

For a while, the main competitor to Java applets was Microsoft’s ActiveX, although that
required that the client be running Windows. Since then, Microsoft has produced a full
competitor to Java in the form of the .NET platform and the C# programming language. The
.NET platform is roughly the same as the Java Virtual Machine (JVM; the software platform
on which Java programs execute) and Java libraries, and C# bears unmistakable similarities
to Java. This is certainly the best work that Microsoft has done in the arena of programming
languages and programming environments. Of course, they had the considerable advantage
of being able to see what worked well and what didn’t work so well in Java, and build upon
that, but build they have. This is the first time since its inception that Java has had any real
competition. As a result, the Java designers at Sun have taken a hard look at C# and why
programmers might want to move to it, and have responded by making fundamental
improvements to Java in Java SE5.

Currently, the main vulnerability and important question concerning .NET is whether
Microsoft will allow it to be completely ported to other platforms. They claim there’s no
problem doing this, and the Mono project (www.go-mono.com) has a partial
implementation of .NET working on Linux, but until the implementation is complete and
Microsoft has not decided to squash any part of it, .NET as a cross-platform solution is still a
risky bet.

Internet vs. intranet

The Web is the most general solution to the client/server problem, so it makes sense to use
the same technology to solve a subset of the problem, in particular the classic client/server
problem within a company. With traditional client/server approaches you have the problem
of multiple types of client computers, as well as the difficulty of installing new client software,
both of which are handily solved with Web browsers and client-side programming. When
Web technology is used for an information network that is restricted to a particular company,
it is referred to as an intranet. Intranets provide much greater security than the Internet,
since you can physically control access to the servers within your company. In terms of
training, it seems that once people understand the general concept of a browser it’s much
easier for them to deal with differences in the way pages and applets look, so the learning
curve for new kinds of systems seems to be reduced.

The security problem brings us to one of the divisions that seems to be automatically forming
in the world of client-side programming. If your program is running on the Internet, you
don’t know what platform it will be working under, and you want to be extra careful that you
don’t disseminate buggy code. You need something cross-platform and secure, like a
scripting language or Java.

If you're running on an intranet, you might have a different set of constraints. It’s not
uncommon that your machines could all be Intel/Windows platforms. On an intranet, you're
responsible for the quality of your own code and can repair bugs when they’re discovered. In

Introduction to Objects 37

addition, you might already have a body of legacy code that you’ve been using in a more
traditional client/server approach, whereby you must physically install client programs every
time you do an upgrade. The time wasted in installing upgrades is the most compelling
reason to move to browsers, because upgrades are invisible and automatic (Java Web Start is
also a solution to this problem). If you are involved in such an intranet, the most sensible
approach to take is the shortest path that allows you to use your existing code base, rather
than trying to recode your programs in a new language.

When faced with this bewildering array of solutions to the client-side programming problem,
the best plan of attack is a cost-benefit analysis. Consider the constraints of your problem
and what would be the shortest path to your solution. Since client-side programming is still
programming, it’s always a good idea to take the fastest development approach for your
particular situation. This is an aggressive stance to prepare for inevitable encounters with the
problems of program development.

Server-side programming

This whole discussion has ignored the issue of server-side programming, which is arguably
where Java has had its greatest success. What happens when you make a request of a server?
Most of the time the request is simply “Send me this file.” Your browser then interprets the
file in some appropriate fashion: as an HTML page, a graphic image, a Java applet, a script
program, etc.

A more complicated request to a server generally involves a database transaction. A common
scenario involves a request for a complex database search, which the server then formats into
an HTML page and sends to you as the result. (Of course, if the client has more intelligence
via Java or a scripting language, the raw data can be sent and formatted at the client end,
which will be faster and less load on the server.) Or you might want to register your name in a
database when you join a group or place an order, which will involve changes to that
database. These database requests must be processed via some code on the server side, which
is generally referred to as server-side programming. Traditionally, server-side programming
has been performed using Perl, Python, C++, or some other language to create CGI
programs, but more sophisticated systems have since appeared. These include Java-based
Web servers that allow you to perform all your server-side programming in Java by writing
what are called servlets. Servlets and their offspring, JSPs, are two of the most compelling
reasons that companies that develop Web sites are moving to Java, especially because they
eliminate the problems of dealing with differently abled browsers. Server-side programming
topics are covered in Thinking in Enterprise Java at www.MindView.net.

Despite all this talk about Java on the Internet, it is a general-purpose programming
language that can solve the kinds of problems that you can solve with other languages. Here,
Java’s strength is not only in its portability, but also its programmability, its robustness, its
large, standard library and the numerous third-party libraries that are available and that
continue to be developed.

Summary

You know what a procedural program looks like: data definitions and function calls. To find
the meaning of such a program, you must work at it, looking through the function calls and
low-level concepts to create a model in your mind. This is the reason we need intermediate
representations when designing procedural programs—by themselves, these programs tend
to be confusing because the terms of expression are oriented more toward the computer than
to the problem you're solving.

Because OOP adds many new concepts on top of what you find in a procedural language,
your natural assumption may be that the resulting Java program will be far more

38

Thinking in Java Bruce Eckel

complicated than the equivalent procedural program. Here, you'll be pleasantly surprised: A
well-written Java program is generally far simpler and much easier to understand than a
procedural program. What you’ll see are the definitions of the objects that represent concepts
in your problem space (rather than the issues of the computer representation) and messages
sent to those objects to represent the activities in that space. One of the delights of object-
oriented programming is that, with a well-designed program, it’s easy to understand the code
by reading it. Usually, there’s a lot less code as well, because many of your problems will be
solved by reusing existing library code.

OOP and Java may not be for everyone. It’s important to evaluate your own needs and decide
whether Java will optimally satisfy those needs, or if you might be better off with another
programming system (including the one you'’re currently using). If you know that your needs
will be very specialized for the foreseeable future and if you have specific constraints that
may not be satisfied by Java, then you owe it to yourself to investigate the alternatives (in
particular, I recommend looking at Python; see www.Python.org). If you still choose Java as
your language, you’ll at least understand what the options were and have a clear vision of
why you took that direction.

Introduction to Objects 39

Everything
Is an Object

“If we spoke a different language, we would perceive a somewhat
different world.”
Ludwig Wittgenstein (1889-1951)

Although it is based on C++, Java is more of a “pure” object-oriented
language.

Both C++ and Java are hybrid languages, but in Java the designers felt that the hybridization
was not as important as it was in C++. A hybrid language allows multiple programming
styles; the reason C++ is hybrid is to support backward compatibility with the C language.
Because C++ is a superset of the C language, it includes many of that language’s undesirable
features, which can make some aspects of C++ overly complicated.

The Java language assumes that you want to do only object-oriented programming. This
means that before you can begin you must shift your mindset into an object-oriented world
(unless it’s already there). The benefit of this initial effort is the ability to program in a
language that is simpler to learn and to use than many other OOP languages. In this chapter
you’ll see the basic components of a Java program and learn that (almost) everything in Java
is an object.

You manipulate objects
with references

Each programming language has its own means of manipulating elements in memory.
Sometimes the programmer must be constantly aware of what type of manipulation is going
on. Are you manipulating the element directly, or are you dealing with some kind of indirect
representation (a pointer in C or C++) that must be treated with a special syntax?

All this is simplified in Java. You treat everything as an object, using a single consistent
syntax. Although you treat everything as an object, the identifier you manipulate is actually a
“reference” to an object.! You might imagine a television (the object) and a remote control
(the reference). As long as you’re holding this reference, you have a connection to the
television, but when someone says, “Change the channel” or “Lower the volume,” what you're
manipulating is the reference, which in turn modifies the object. If you want to move around

1 This can be a flashpoint. There are those who say, “Clearly, it’s a pointer,” but this presumes an underlying
implementation. Also, Java references are much more akin to C++ references than to pointers in their syntax. In the 1st
edition of this book, I chose to invent a new term, “handle,” because C++ references and Java references have some
important differences. I was coming out of C++ and did not want to confuse the C++ programmers whom I assumed
would be the largest audience for Java. In the 2nd edition, I decided that “reference” was the more commonly used term,
and that anyone changing from C++ would have a lot more to cope with than the terminology of references, so they might
as well jump in with both feet. However, there are people who disagree even with the term “reference.” I read in one book
where it was “completely wrong to say that Java supports pass by reference,” because Java object identifiers (according to
that author) are actually “object references.” And (he goes on) everything is actually pass by value. So you’re not passing
by reference, you're “passing an object reference by value.” One could argue for the precision of such convoluted
explanations, but I think my approach simplifies the understanding of the concept without hurting anything (well, the
language lawyers may claim that I'm lying to you, but I'll say that I'm providing an appropriate abstraction).

the room and still control the television, you take the remote/reference with you, not the
television.

Also, the remote control can stand on its own, with no television. That is, just because you
have a reference doesn’t mean there’s necessarily an object connected to it. So if you want to
hold a word or sentence, you create a String reference:

String s;

But here you've created only the reference, not an object. If you decided to send a message to
s at this point, you’ll get an error because s isn’t actually attached to anything (there’s no
television). A safer practice, then, is always to initialize a reference when you create it:

String s = "asdf";

However, this uses a special Java feature: Strings can be initialized with quoted text.
Normally, you must use a more general type of initialization for objects.

You must create

all the objects

When you create a reference, you want to connect it with a new object. You do so, in general,
with the new operator. The keyword new says, “Make me a new one of these objects.” So in
the preceding example, you can say:

String s = new String("asdf");

Not only does this mean “Make me a new String,” but it also gives information about how to
make the String by supplying an initial character string.

Of course, Java comes with a plethora of ready-made types in addition to String. What’s
more important is that you can create your own types. In fact, creating new types is the
fundamental activity in Java programming, and it’s what you’ll be learning about in the rest
of this book.

Where storage lives

It’s useful to visualize some aspects of how things are laid out while the program is running—
in particular how memory is arranged. There are five different places to store data:

1. Registers. This is the fastest storage because it exists in a place different from that of
other storage: inside the processor. However, the number of registers is severely
limited, so registers are allocated as they are needed. You don’t have direct control,
nor do you see any evidence in your programs that registers even exist (C & C++, on
the other hand, allow you to suggest register allocation to the compiler).

2. The stack. This lives in the general random-access memory (RAM) area, but has
direct support from the processor via its stack pointer. The stack pointer is moved
down to create new memory and moved up to release that memory. This is an
extremely fast and efficient way to allocate storage, second only to registers. The Java
system must know, while it is creating the program, the exact lifetime of all the items
that are stored on the stack. This constraint places limits on the flexibility of your
programs, so while some Java storage exists on the stack—in particular, object
references—Java objects themselves are not placed on the stack.

42

Thinking in Java Bruce Eckel

3. The heap. This is a general-purpose pool of memory (also in the RAM area) where all
Java objects live. The nice thing about the heap is that, unlike the stack, the compiler
doesn’t need to know how long that storage must stay on the heap. Thus, there’s a
great deal of flexibility in using storage on the heap. Whenever you need an object, you
simply write the code to create it by using new, and the storage is allocated on the
heap when that code is executed. Of course there’s a price you pay for this flexibility: It
may take more time to allocate and clean up heap storage than stack storage (if you
even could create objects on the stack in Java, as you can in C++).

4. Constant storage. Constant values are often placed directly in the program code,
which is safe since they can never change. Sometimes constants are cordoned off by
themselves so that they can be optionally placed in read-only memory (ROM), in
embedded systems.?

5. Non-RAM storage. If data lives completely outside a program, it can exist while the
program is not running, outside the control of the program. The two primary
examples of this are streamed objects, in which objects are turned into streams of
bytes, generally to be sent to another machine, and persistent objects, in which the
objects are placed on disk so they will hold their state even when the program is
terminated. The trick with these types of storage is turning the objects into something
that can exist on the other medium, and yet can be resurrected into a regular RAM-
based object when necessary. Java provides support for lightweight persistence, and
mechanisms such as JDBC and Hibernate provide more sophisticated support for
storing and retrieving object information in databases.

Special case: primitive types

One group of types, which you’ll use quite often in your programming, gets special treatment.
You can think of these as “primitive” types. The reason for the special treatment is that to
create an object with new—especially a small, simple variable—isn’t very efficient, because
new places objects on the heap. For these types Java falls back on the approach taken by C
and C++. That is, instead of creating the variable by using new, an “automatic” variable is
created that is not a reference. The variable holds the value directly, and it’s placed on the
stack, so it’s much more efficient.

Java determines the size of each primitive type. These sizes don’t change from one machine
architecture to another as they do in most languages. This size invariance is one reason Java
programs are more portable than programs in most other languages.

Primitive Size Minimum | Maximum Wrapper type
type

boolean — — — Boolean
char 16 bits | Unicode o Unicode 216- 1 Character
byte 8 bits | -128 +127 Byte
short 16 bits | -215 +215-1 Short

int 32 bits | -23t +231-1 Integer
long 64 bits | -263 +263-1 Long
float 32 bits | IEEE754 IEEE754 Float
double 64 bits | IEEE754 IEEE754 Double
void — - — Void

2 An example of this is the string pool. All literal strings and string-valued constant expressions are interned automatically
and put into special static storage.

Everything Is an Object 43

All numeric types are signed, so don’t look for unsigned types.

The size of the boolean type is not explicitly specified; it is only defined to be able to take
the literal values true or false.

The “wrapper” classes for the primitive data types allow you to make a non-primitive object
on the heap to represent that primitive type. For example:

‘ ’

char ¢ = ‘x’;
Character ch = new Character(c);

Or you could also use:
Character ch = new Character(‘x’);

Java SE5 autoboxing will automatically convert from a primitive to a wrapper type:

Character ch = ‘x’;
and back:
char ¢ = ch;

The reasons for wrapping primitives will be shown in a later chapter.

High-precision numbers

Java includes two classes for performing high-precision arithmetic: Biglnteger and
BigDecimal. Although these approximately fit into the same category as the “wrapper”
classes, neither one has a primitive analogue.

Both classes have methods that provide analogues for the operations that you perform on
primitive types. That is, you can do anything with a Biglnteger or BigDecimal that you
can with an int or float, it’s just that you must use method calls instead of operators. Also,
since there’s more involved, the operations will be slower. You're exchanging speed for
accuracy.

Biglnteger supports arbitrary-precision integers. This means that you can accurately
represent integral values of any size without losing any information during operations.

BigDecimal is for arbitrary-precision fixed-point numbers; you can use these for accurate
monetary calculations, for example.

Consult the JDK documentation for details about the constructors and methods you can call
for these two classes.

Arrays in Java

Virtually all programming languages support some kind of arrays. Using arrays in C and C++
is perilous because those arrays are only blocks of memory. If a program accesses the array
outside of its memory block or uses the memory before initialization (common programming
errors), there will be unpredictable results.

One of the primary goals of Java is safety, so many of the problems that plague programmers
in C and C++ are not repeated in Java. A Java array is guaranteed to be initialized and cannot

44

Thinking in Java Bruce Eckel

be accessed outside of its range. The range checking comes at the price of having a small
amount of memory overhead on each array as well as verifying the index at run time, but the
assumption is that the safety and increased productivity are worth the expense (and Java can
sometimes optimize these operations).

When you create an array of objects, you are really creating an array of references, and each
of those references is automatically initialized to a special value with its own keyword: null.
When Java sees null, it recognizes that the reference in question isn’t pointing to an object.
You must assign an object to each reference before you use it, and if you try to use a reference
that’s still null, the problem will be reported at run time. Thus, typical array errors are
prevented in Java.

You can also create an array of primitives. Again, the compiler guarantees initialization
because it zeroes the memory for that array.

Arrays will be covered in detail in later chapters.

You never need to
destroy an object

In most programming languages, the concept of the lifetime of a variable occupies a
significant portion of the programming effort. How long does the variable last? If you are
supposed to destroy it, when should you? Confusion over variable lifetimes can lead to a lot
of bugs, and this section shows how Java greatly simplifies the issue by doing all the cleanup
work for you.

Scoping

Most procedural languages have the concept of scope. This determines both the visibility and
lifetime of the names defined within that scope. In C, C++, and Java, scope is determined by
the placement of curly braces {}. So for example:

{
int x = 12;
// Only x available

int g = 96;
// Both x & g available

// Only x available
// gq is "out of scope"

}

A variable defined within a scope is available only to the end of that scope.
Any text after a °//’ to the end of a line is a comment.

Indentation makes Java code easier to read. Since Java is a free-form language, the extra
spaces, tabs, and carriage returns do not affect the resulting program.

You cannot do the following, even though it is legal in C and C++:

{
int x = 12;
{

Everything Is an Object 45

int x = 96; // Illegal
}
}

The compiler will announce that the variable X has already been defined. Thus the C and C++
ability to “hide” a variable in a larger scope is not allowed, because the Java designers
thought that it led to confusing programs.

Scope of objects

Java objects do not have the same lifetimes as primitives. When you create a Java object
using new, it hangs around past the end of the scope. Thus if you use:

{
String s = new String("a string");
} // End of scope

the reference s vanishes at the end of the scope. However, the String object that s was
pointing to is still occupying memory. In this bit of code, there is no way to access the object
after the end of the scope, because the only reference to it is out of scope. In later chapters
you’ll see how the reference to the object can be passed around and duplicated during the
course of a program.

It turns out that because objects created with new stay around for as long as you want them,
a whole slew of C++ programming problems simply vanish in Java. In C++ you must not only
make sure that the objects stay around for as long as you need them, you must also destroy
the objects when you’re done with them.

That brings up an interesting question. If Java leaves the objects lying around, what keeps
them from filling up memory and halting your program? This is exactly the kind of problem
that would occur in C++. This is where a bit of magic happens. Java has a garbage collector,
which looks at all the objects that were created with new and figures out which ones are not
being referenced anymore. Then it releases the memory for those objects, so the memory can
be used for new objects. This means that you never need to worry about reclaiming memory
yourself. You simply create objects, and when you no longer need them, they will go away by
themselves. This eliminates a certain class of programming problem: the so-called “memory
leak,” in which a programmer forgets to release memory.

Creating new data types: class

If everything is an object, what determines how a particular class of object looks and
behaves? Put another way, what establishes the type of an object? You might expect there to
be a keyword called “type,” and that certainly would have made sense. Historically, however,
most objectoriented languages have used the keyword class to mean “I'm about to tell you
what a new type of object looks like.” The class keyword (which is so common that it will not
usually be boldfaced throughout this book) is followed by the name of the new type. For
example:

class ATypeName { /* Class body goes here */ }

This introduces a new type, although the class body consists only of a comment (the stars and
slashes and what is inside, which will be discussed later in this chapter), so there is not too
much that you can do with it. However, you can create an object of this type using new:

ATypeName a = new ATypeName() ;

46

Thinking in Java Bruce Eckel

But you cannot tell it to do much of anything (that is, you cannot send it any interesting
messages) until you define some methods for it.

Fields and methods

When you define a class (and all you do in Java is define classes, make objects of those
classes, and send messages to those objects), you can put two types of elements in your class:
fields (sometimes called data members), and methods (sometimes called member functions).
A field is an object of any type that you can talk to via its reference, or a primitive type. If it is
a reference to an object, you must initialize that reference to connect it to an actual object
(using new, as seen earlier).

Each object keeps its own storage for its fields; ordinary fields are not shared among objects.
Here is an example of a class with some fields:

class DataOnly {
int 1;
double d;
boolean b;
}
This class doesn’t do anything except hold data. But you can create an object like this:
\ DataOnly data = new DataOnly();
You can assign values to the fields, but you must first know how to refer to a member of an
object. This is accomplished by stating the name of the object reference, followed by a period
(dot), followed by the name of the member inside the object:

| objectReference.member

For example:

data.i = 47;
data.d = 1.1;
data.b = false;

It is also possible that your object might contain other objects that contain data you’d like to
modify. For this, you just keep “connecting the dots.” For example:

| myPlane.leftTank.capacity = 100;

The DataOnly class cannot do much of anything except hold data, because it has no
methods. To understand how those work, you must first understand arguments and return
values, which will be described shortly.

Default values for primitive members

When a primitive data type is a member of a class, it is guaranteed to get a default value if
you do not initialize it:

Primitive type Default

boolean false
char \u0000’ (null)

Everything Is an Object 47

Primitive type Default
byte (byte)O
short (short)o
int (0]

long oL

float 0.0of
double 0.0d

The default values are only what Java guarantees when the variable is used as a member of a
class. This ensures that member variables of primitive types will always be initialized
(something C++ doesn’t do), reducing a source of bugs. However, this initial value may not
be correct or even legal for the program you are writing. It’s best to always explicitly initialize
your variables.

This guarantee doesn’t apply to local variables—those that are not fields of a class. Thus, if
within a method definition you have:

| int x;

Then x will get some arbitrary value (as in C and C++); it will not automatically be initialized
to zero. You are responsible for assigning an appropriate value before you use x. If you forget,
Java definitely improves on C++: You get a compile-time error telling you the variable might
not have been initialized. (Many C++ compilers will warn you about uninitialized variables,
but in Java these are errors.)

Methods, arguments,
and return values

In many languages (like C and C++), the term function is used to describe a named
subroutine. The term that is more commonly used in Java is method, as in “a way to do
something.” If you want, you can continue thinking in terms of functions. It’s really only a
syntactic difference, but this book follows the common Java usage of the term “method.”

Methods in Java determine the messages an object can receive. The fundamental parts of a
method are the name, the arguments, the return type, and the body. Here is the basic form:

ReturnType methodName(/* Argument list */) {
/* Method body */
}

The return type describes the value that comes back from the method after you call it. The
argument list gives the types and names for the information that you want to pass into the
method. The method name and argument list (which is called the signature of the method)
uniquely identify that method.

Methods in Java can be created only as part of a class. A method can be called only for an
object,3 and that object must be able to perform that method call. If you try to call the wrong
method for an object, you’ll get an error message at compile time. You call a method for an
object by naming the object followed by a period (dot), followed by the name of the method
and its argument list, like this:

3 static methods, which you'll learn about soon, can be called for the class, without an object.

48 Thinking in Java Bruce Eckel

\ objectName.methodName(argl, arg2, arg3);

For example, suppose you have a method f() that takes no arguments and returns a value of
type int. Then, if you have an object called a for which f(') can be called, you can say this:

| dint x = a.f();

The type of the return value must be compatible with the type of x. This act of calling a
method is commonly referred to as sending a message to an object. In the preceding
example, the message is () and the object is a. Object-oriented programming is often
summarized as simply “sending messages to objects.”

The argument list

The method argument list specifies what information you pass into the method. As you might
guess, this information—like everything else in Java—takes the form of objects. So, what you
must specify in the argument list are the types of the objects to pass in and the name to use
for each one. As in any situation in Java where you seem to be handing objects around, you
are actually passing references.4 The type of the reference must be correct, however. If the
argument is supposed to be a String, you must pass in a String or the compiler will give an
error. Consider a method that takes a String as its argument. Here is the definition, which
must be placed within a class definition for it to be compiled:

int storage(String s) {
return s.length() * 2;
}

This method tells you how many bytes are required to hold the information in a particular
String. (The size of each char in a String is 16 bits, or two bytes, to support Unicode
characters.) The argument is of type String and is called s. Once s is passed into the method,
you can treat it just like any other object. (You can send messages to it.) Here, the length()
method is called, which is one of the methods for Strings; it returns the number of
characters in a string.

You can also see the use of the return keyword, which does two things. First, it means
“Leave the method, I'm done.” Second, if the method produces a value, that value is placed
right after the return statement. In this case, the return value is produced by evaluating the
expression s.length() * 2.

You can return any type you want, but if you don’t want to return anything at all, you do so by
indicating that the method returns void. Here are some examples:

boolean flag() { return true; }

double naturalLogBase() { return 2.718; }
void nothing() { return; }

void nothing2() {}

When the return type is void, then the return keyword is used only to exit the method, and
is therefore unnecessary when you reach the end of the method. You can return from a
method at any point, but if you've given a non-void return type, then the compiler will force
you (with error messages) to return the appropriate type of value regardless of where you
return.

At this point, it can look like a program is just a bunch of objects with methods that take
other objects as arguments and send messages to those other objects. That is indeed much of

Everything Is an Object 49

what goes on, but in the following chapter you’ll learn how to do the detailed low-level work
by making decisions within a method. For this chapter, sending messages will suffice.

Building a Java program

There are several other issues you must understand before seeing your first Java program.

Name visibility

A problem in any programming language is the control of names. If you use a name in one
module of the program, and another programmer uses the same name in another module,
how do you distinguish one name from another and prevent the two names from “clashing”?
In C this is a particular problem because a program is often an unmanageable sea of names.
C++ classes (on which Java classes are based) nest functions within classes so they cannot
clash with function names nested within other classes. However, C++ still allows global data
and global functions, so clashing is still possible. To solve this problem, C++ introduced
namespaces using additional keywords.

Java was able to avoid all of this by taking a fresh approach. To produce an unambiguous
name for a library, the Java creators want you to use your Internet domain name in reverse
since domain names are guaranteed to be unique. Since my domain name is
MindView.net, my utility library of foibles would be named
net.mindview.utility.foibles. After your reversed domain name, the dots are intended to
represent subdirectories.

In Java 1.0 and Java 1.1 the domain extensions com, edu, org, net, etc., were capitalized by
convention, so the library would appear: NET.mindview.utility.foibles. Partway through
the development of Java 2, however, it was discovered that this caused problems, so now the
entire package name is lowercase.

This mechanism means that all of your files automatically live in their own namespaces, and
each class within a file must have a unique identifier—the language prevents name clashes for
you.

Using other components

Whenever you want to use a predefined class in your program, the compiler must know how
to locate it. Of course, the class might already exist in the same source-code file that it’s being
called from. In that case, you simply use the class—even if the class doesn’t get defined until
later in the file (Java eliminates the so-called “forward referencing” problem).

What about a class that exists in some other file? You might think that the compiler should
be smart enough to simply go and find it, but there is a problem. Imagine that you want to
use a class with a particular name, but more than one definition for that class exists
(presumably these are different definitions). Or worse, imagine that you're writing a
program, and as you're building it you add a new class to your library that conflicts with the
name of an existing class.

To solve this problem, you must eliminate all potential ambiguities. This is accomplished by
telling the Java compiler exactly what classes you want by using the import keyword.
import tells the compiler to bring in a package, which is a library of classes. (In other
languages, a library could consist of functions and data as well as classes, but remember that
all code in Java must be written inside a class.)

50

Thinking in Java Bruce Eckel

Most of the time you’ll be using components from the standard Java libraries that come with
your compiler. With these, you don’t need to worry about long, reversed domain names; you
just say, for example:

\ import java.util.ArraylList;

to tell the compiler that you want to use Java’s ArrayL.ist class. However, util contains a
number of classes, and you might want to use several of them without declaring them all
explicitly. This is easily accomplished by using “*’ to indicate a wild card:

| import java.util.*;

It is more common to import a collection of classes in this manner than to import classes
individually.

The static keyword

Ordinarily, when you create a class you are describing how objects of that class look and how
they will behave. You don’t actually get an object until you create one using new, and at that
point storage is allocated and methods become available.

There are two situations in which this approach is not sufficient. One is if you want to have
only a single piece of storage for a particular field, regardless of how many objects of that
class are created, or even if no objects are created. The other is if you need a method that isn’t
associated with any particular object of this class. That is, you need a method that you can
call even if no objects are created.

You can achieve both of these effects with the static keyword. When you say something is
static, it means that particular field or method is not tied to any particular object instance of
that class. So even if you've never created an object of that class you can call a static method
or access a static field. With ordinary, non-static fields and methods, you must create an
object and use that object to access the field or method, since non-static fields and methods
must know the particular object they are working with.4

Some object-oriented languages use the terms class data and class methods, meaning that
the data and methods exist only for the class as a whole, and not for any particular objects of
the class. Sometimes the Java literature uses these terms too.

To make a field or method static, you simply place the keyword before the definition. For
example, the following produces a static field and initializes it:
class StaticTest {
static int i = 47;

}

Now even if you make two StaticTest objects, there will still be only one piece of storage for
StaticTest.i. Both objects will share the same i. Consider:

new StaticTest();
new StaticTest();

StaticTest stl
StaticTest st2

4 Of course, since static methods don’t need any objects to be created before they are used, they cannot directly access
non-static members or methods by simply calling those other members without referring to a named object (since non-
static members and methods must be tied to a particular object).

Everything Is an Object 51

At this point, both stl.i and st2.i have the same value of 47 since they refer to the same piece
of memory.

There are two ways to refer to a static variable. As the preceding example indicates, you can
name it via an object, by saying, for example, st2.i. You can also refer to it directly through
its class name, something you cannot do with a non-static member.

StaticTest.i++;

The ++ operator adds one to the variable. At this point, both stl.i and st2.i will have the
value 48.

Using the class name is the preferred way to refer to a static variable. Not only does it
emphasize that variable’s static nature, but in some cases it gives the compiler better
opportunities for optimization.

Similar logic applies to static methods. You can refer to a static method either through an
object as you can with any method, or with the special additional syntax
ClassName.method(). You define a static method in a similar way:

class Incrementable {
static void increment() { StaticTest.i++; }

}

You can see that the Incrementable method increment() increments the static data i
using the ++ operator. You can call increment() in the typical way, through an object:

Incrementable sf = new Incrementable();
sf.increment();

Or, because increment() is a static method, you can call it directly through its class:
Incrementable.increment() ;

Although static, when applied to a field, definitely changes the way the data is created (one
for each class versus the non-static one for each object), when applied to a method it’s not so
dramatic. An important use of static for methods is to allow you to call that method without
creating an object. This is essential, as you will see, in defining the main() method that is
the entry point for running an application.

Your first Java program

Finally, here’s the first complete program. It starts by printing a string, and then the date,
using the Date class from the Java standard library.

// HelloDate.java
import java.util.*;
public class HelloDate {
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());
}
}

52

Thinking in Java Bruce Eckel

At the beginning of each program file, you must place any necessary import statements to
bring in extra classes you'll need for the code in that file. Note that I say “extra”. That’s
because there’s a certain library of classes that are automatically brought into every Java file:
java.lang. Start up your Web browser and look at the documentation from Sun. (If you
haven’t downloaded the JDK documentation from http://java.sun.com, do so now.5 Note
that this documentation doesn’t come packed with the JDK; you must do a separate
download to get it.) If you look at the list of the packages, you'll see all the different class
libraries that come with Java. Select java.lang. This will bring up a list of all the classes that
are part of that library. Since java.lang is implicitly included in every Java code file, these
classes are automatically available. There’s no Date class listed in java.lang, which means
you must import another library to use that. If you don’t know the library where a particular
class is, or if you want to see all of the classes, you can select “Tree” in the Java
documentation. Now you can find every single class that comes with Java. Then you can use
the browser’s “find” function to find Date. When you do you’ll see it listed as
java.util.Date, which lets you know that it’s in the util library and that you must import
java.util.* in order to use Date.

If you go back to the beginning, select java.lang and then System, you'll see that the
System class has several fields, and if you select out, you’ll discover that it’s a static
PrintStream object. Since it’s static, you don’t need to create anything with new. The out
object is always there, and you can just use it. What you can do with this out object is
determined by its type: PrintStream. Conveniently, PrintStream is shown in the
description as a hyperlink, so if you click on that, you’ll see a list of all the methods you can
call for PrintStream. There are quite a few, and these will be covered later in the book. For
now all we’re interested in is println(), which in effect means “Print what I'm giving you
out to the console and end with a newline.” Thus, in any Java program you write you can
write something like this:

| System.out.println("A String of things");
whenever you want to display information to the console.

The name of the class is the same as the name of the file. When you’re creating a standalone
program such as this one, one of the classes in the file must have the same name as the file.
(The compiler complains if you don’t do this.) That class must contain a method called
main() with this signature and return type:

| public static void main(String[] args) {

The public keyword means that the method is available to the outside world (described in
detail in the Access Control chapter). The argument to main() is an array of String objects.
The args won'’t be used in this program, but the Java compiler insists that they be there
because they hold the arguments from the command line.

The line that prints the date is quite interesting:
| System.out.println(new Date());

The argument is a Date object that is being created just to send its value (which is
automatically converted to a String) to println(). As soon as this statement is finished,
that Date is unnecessary, and the garbage collector can come along and get it anytime. We
don’t need to worry about cleaning it up.

5 The Java compiler and documentation from Sun tend to change regularly, and the best place to get them is directly from
Sun. By downloading it yourself, you will get the most recent version.

Everything Is an Object 53

When you look at the JDK documentation from http://java.sun.com, you will see that
System has many other methods that allow you to produce interesting effects (one of Java’s
most powerful assets is its large set of standard libraries). For example:

//: object/ShowProperties.java

public class ShowProperties {
public static void main(String[] args) {
System.getProperties().list(System.out);
System.out.println(System.getProperty("user.name"));
System.out.printiln(
System.getProperty("java.library.path"));

}
Yy I~

The first line in main() displays all of the “properties” from the system where you are
running the program, so it gives you environment information. The list() method sends the
results to its argument, System.out. You will see later in the book that you can send the
results elsewhere, to a file, for example. You can also ask for a specific property—in this case,
the user name and java.library.path. (The unusual comments at the beginning and end
will be explained a little later.)

Compiling and running

To compile and run this program, and all the other programs in this book, you must first
have a Java programming environment. There are a number of third-party development
environments, but in this book I will assume that you are using the Java Developer’s Kit
(JDK) from Sun, which is free. If you are using another development system,® you will need
to look in the documentation for that system to determine how to compile and run programs.

Get on the Internet and go to http://java.sun.com. There you will find information and links
that will lead you through the process of downloading and installing the JDK for your

particular platform.

Once the JDK is installed, and you’ve set up your computer’s path information so that it will
find javac and java, download and unpack the source code for this book (you can find it at
www.MindView.net). This will create a subdirectory for each chapter in this book. Move to
the subdirectory named objects and type:

javac HelloDate.java

This command should produce no response. If you get any kind of an error message, it means
you haven’t installed the JDK properly and you need to investigate those problems.

On the other hand, if you just get your command prompt back, you can type:
java HelloDate
and you'll get the message and the date as output.

This is the process you can use to compile and run each of the programs in this book.
However, you will see that the source code for this book also has a file called build.xml in
each chapter, and this contains “Ant” commands for automatically building the files for that

6 IBM’s “jikes” compiler is a common alternative, as it is significantly faster than Sun’s javac (although if you’re building
groups of files using Ant, there’s not too much of a difference). There are also open-source projects to create Java
compilers, runtime environments, and libraries.

54

Thinking in Java Bruce Eckel

chapter. Buildfiles and Ant (including where to download it) are described more fully in the
supplement you will find at http://MindView.net/Books/BetterJava, but once you have Ant
installed (from http://jakarta.apache.org/ant) you can just type ‘ant’ at the command
prompt to compile and run the programs in each chapter. If you haven’t installed Ant yet, you
can just type the javac and java commands by hand.

Comments and embedded
documentation

There are two types of comments in Java. The first is the traditional C-style comment that
was inherited by C++. These comments begin with a /* and continue, possibly across many
lines, until a */. Note that many programmers will begin each line of a continued comment
with a *, so you’ll often see:

/* This is a comment
* that continues
* across lines
*/

Remember, however, that everything inside the /* and */ is ignored, so there’s no difference
in saying;:

/* This is a comment that
continues across lines */

The second form of comment comes from C++. It is the single-line comment, which starts
with a // and continues until the end of the line. This type of comment is convenient and
commonly used because it’s easy. You don’t need to hunt on the keyboard to find / and then *
(instead, you just press the same key twice), and you don’t need to close the comment. So you
will often see:

\ // This is a one-line comment
Comment documentation

Possibly the biggest problem with documenting code has been maintaining that
documentation. If the documentation and the code are separate, it becomes tedious to
change the documentation every time you change the code. The solution seems simple: Link
the code to the documentation. The easiest way to do this is to put everything in the same file.
To complete the picture, however, you need a special comment syntax to mark the
documentation and a tool to extract those comments and put them in a useful form. This is
what Java has done.

The tool to extract the comments is called Javadoc, and it is part of the JDK installation. It
uses some of the technology from the Java compiler to look for special comment tags that you
put in your programs. It not only extracts the information marked by these tags, but it also
pulls out the class name or method name that adjoins the comment. This way you can get
away with the minimal amount of work to generate decent program documentation.

The output of Javadoc is an HTML file that you can view with your Web browser. Thus,
Javadoc allows you to create and maintain a single source file and automatically generate
useful documentation. Because of Javadoc, you have a straightforward standard for creating
documentation, so you can expect or even demand documentation with all Java libraries.

Everything Is an Object 55

In addition, you can write your own Javadoc handlers, called doclets, if you want to perform
special operations on the information processed by Javadoc (to produce output in a different
format, for example). Doclets are introduced in the supplement at
http://MindView.net/Books/BetterJava.

What follows is only an introduction and overview of the basics of Javadoc. A thorough
description can be found in the JDK documentation. When you unpack the documentation,
look in the “tooldocs” subdirectory (or follow the “tooldocs” link).

Syntax

All of the Javadoc commands occur only within /** comments. The comments end with */ as
usual. There are two primary ways to use Javadoc: Embed HTML or use “doc tags.”
Standalone doc tags are commands that start with an ‘@’ and are placed at the beginning of
a comment line. (A leading “*’, however, is ignored.) Inline doc tags can appear anywhere
within a Javadoc comment and also start with an ‘@’ but are surrounded by curly braces.

There are three “types” of comment documentation, which correspond to the element the
comment precedes: class, field, or method. That is, a class comment appears right before the
definition of a class, a field comment appears right in front of the definition of a field, and a
method comment appears right in front of the definition of a method. As a simple example:

//: object/Documentationl.java

/** A class comment */

public class Documentationl {
/** A field comment */
public int 1i;
/** A method comment */
public void f() {}

Y /1~

Note that Javadoc will process comment documentation for only public and protected
members. Comments for private and package-access members (see the Access Control
chapter) are ignored, and you’ll see no output. (However, you can use the -private flag to
include private members as well.) This makes sense, since only public and protected
members are available outside the file, which is the client programmer’s perspective.

The output for the preceding code is an HTML file that has the same standard format as all
the rest of the Java documentation, so users will be comfortable with the format and can
easily navigate your classes. It’s worth entering the preceding code, sending it through
Javadoc, and viewing the resulting HTML file to see the results.

Embedded HTML

Javadoc passes HTML commands through to the generated HTML document. This allows
you full use of HTML; however, the primary motive is to let you format code, such as:

//: object/Documentation2.java
/**

* <pre>

* System.out.println(new Date());
* </pre>

*/

/17~

You can also use HTML just as you would in any other Web document to format the regular
text in your descriptions:

56

Thinking in Java Bruce Eckel

//: object/Documentation3.java

/**

* You can even insert a list:

<1i> Item one

 Item two

 Item three

*

*/

/1]~

EE R

Note that within the documentation comment, asterisks at the beginning of a line are thrown
away by Javadoc, along with leading spaces. Javadoc reformats everything so that it
conforms to the standard documentation appearance. Don’t use headings such as <h1> or
<hr> as embedded HTML, because Javadoc inserts its own headings and yours will interfere
with them.

All types of comment documentation—class, field, and method—can support embedded
HTML.

Some example tags

Here are some of the Javadoc tags available for code documentation. Before trying to do
anything serious using Javadoc, you should consult the Javadoc reference in the JDK
documentation to learn all the different ways that you can use Javadoc.

@see

This tag allows you to refer to the documentation in other classes. Javadoc will generate
HTML with the @see tags hyperlinked to the other documentation. The forms are:

@see classname
@see fully-qualified-classname
@see fully-qualified-classname#method-name

Each one adds a hyperlinked “See Also” entry to the generated documentation. Javadoc will
not check the hyperlinks you give it to make sure they are valid.

{@link package.class#member label}

Very similar to @see, except that it can be used inline and uses the label as the hyperlink text
rather than “See Also.”

{@docRoot}

Produces the relative path to the documentation root directory. Useful for explicit
hyperlinking to pages in the documentation tree.

{@inheritDoc}

Inherits the documentation from the nearest base class of this class into the current doc
comment.

Everything Is an Object 57

@version
This is of the form:
@version version-information

in which version-information is any significant information you see fit to include. When
the - version flag is placed on the Javadoc command line, the version information will be
called out specially in the generated HTML documentation.

@author
This is of the form:
@author author-information

in which author-information is, presumably, your name, but it could also include your
email address or any other appropriate information. When the -author flag is placed on the
Javadoc command line, the author information will be called out specially in the generated
HTML documentation.

You can have multiple author tags for a list of authors, but they must be placed consecutively.
All the author information will be lumped together into a single paragraph in the generated
HTML.

@since

This tag allows you to indicate the version of this code that began using a particular feature.
You'll see it appearing in the HTML Java documentation to indicate what version of the JDK
is used.

@param
This is used for method documentation, and is of the form:
@param parameter-name description

in which parameter-name is the identifier in the method parameter list, and description
is text that can continue on subsequent lines. The description is considered finished when a
new documentation tag is encountered. You can have any number of these, presumably one
for each parameter.

@return
This is used for method documentation, and looks like this:
@return description

in which description gives you the meaning of the return value. It can continue on
subsequent lines.

58

Thinking in Java Bruce Eckel

@throws

Exceptions will be demonstrated in the Error Handling with Exceptions chapter. Briefly,
they are objects that can be “thrown” out of a method if that method fails. Although only one
exception object can emerge when you call a method, a particular method might produce any
number of different types of exceptions, all of which need descriptions. So the form for the
exception tag is:

| @throws fully-qualified-class-name description

in which fully-qualified-class-name gives an unambiguous name of an exception class that’s
defined somewhere, and description (which can continue on subsequent lines) tells you why
this particular type of exception can emerge from the method call.

@deprecated

This is used to indicate features that were superseded by an improved feature. The
deprecated tag is a suggestion that you no longer use this particular feature, since sometime
in the future it is likely to be removed. A method that is marked @deprecated causes the
compiler to issue a warning if it is used. In Java SE5, the @deprecated Javadoc tag has
been superseded by the @Deprecated annotation (you’ll learn about these in the
Annotations chapter).

Documentation example

Here is the first Java program again, this time with documentation comments added:

//: object/HelloDate.java
import java.util.*;

/** The first Thinking in Java example program.
* Displays a string and today’s date.
* @author Bruce Eckel
* @author www.MindView.net
* @version 4.0
*/
public class HelloDate {
/** Entry point to class & application.
* @param args array of string arguments
* @throws exceptions No exceptions thrown
*/
public static void main(String[] args) {
System.out.println("Hello, it’s: ");
System.out.println(new Date());

}
} /* Output: (55% match)
Hello, it’s:
Wed Oct 05 14:39:36 MDT 2005
*/]] i~

The first line of the file uses my own technique of putting a ‘//:” as a special marker for the
comment line containing the source file name. That line contains the path information to the
file (object indicates this chapter) followed by the file name. The last line also finishes with a
comment, and this one (*///:~’) indicates the end of the source code listing, which allows it to
be automatically updated into the text of this book after being checked with a compiler and
executed.

Everything Is an Object 59

The /* Output: tag indicates the beginning of the output that will be generated by this file.
In this form, it can be automatically tested to verify its accuracy. In this case, the (55%
match) indicates to the testing system that the output will be fairly different from one run to
the next so it should only expect a 55 percent correlation with the output shown here. Most
examples in this book that produce output will contain the output in this commented form,
so you can see the output and know that it is correct.

Coding style

The style described in the Code Conventions for the Java Programming Language? is to
capitalize the first letter of a class name. If the class name consists of several words, they are
run together (that is, you don’t use underscores to separate the names), and the first letter of
each embedded word is capitalized, such as:

class Al1lTheColorsOfTheRainbow { //

This is sometimes called “camel-casing.” For almost everything else—methods, fields
(member variables), and object reference names—the accepted style is just as it is for classes
except that the first letter of the identifier is lowercase. For example:

class AllTheColorsOfTheRainbow {
int anIntegerRepresentingColors;
void changeTheHueOfTheColor(int newHue) {
//

}
!/
}
The user must also type all these long names, so be merciful.

The Java code you will see in the Sun libraries also follows the placement of open-and-close
curly braces that you see used in this book.

Summary

The goal of this chapter is just enough Java to understand how to write a simple program.
You've also gotten an overview of the language and some of its basic ideas. However, the
examples so far have all been of the form “Do this, then do that, then do something else.” The
next two chapters will introduce the basic operators used in Java programming, and then
show you how to control the flow of your program.

Exercises

Normally, exercises will be distributed throughout the chapters, but in this chapter you were
learning how to write basic programs so all the exercises were delayed until the end.

The number in parentheses after each exercise number is an indicator of how difficult the
exercise is, in a ranking from 1-10.

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide,
available for sale from www.MindView.net.

7 http://java.sun.com/docs/codeconv/index.html. To preserve space in this book and seminar presentations, not all of
these guidelines could be followed, but you’ll see that the style I use here matches the Java standard as much as possible.

60

Thinking in Java Bruce Eckel

Exercise 1: (2) Create a class containing an int and a char that are not initialized, and
print their values to verify that Java performs default initialization.

Exercise 2: (1) Following the HelloDate.java example in this chapter, create a “hello,
world” program that simply displays that statement. You need only a single method in your
class (the “main” one that gets executed when the program starts). Remember to make it
static and to include the argument list, even though you don’t use the argument list. Compile
the program with javac and run it using java. If you are using a different development
environment than the JDK, learn how to compile and run programs in that environment.

Exercise 3: (1) Find the code fragments involving ATypeName and turn them into a
program that compiles and runs.

Exercise 4: (1) Turn the DataOnly code fragments into a program that compiles and
runs.

Exercise 5: (1) Modify the previous exercise so that the values of the data in DataOnly
are assigned to and printed in main().

EXxercise 6: (2) Write a program that includes and calls the storage() method defined
as a code fragment in this chapter.

Exercise 7: (1) Turn the Incrementable code fragments into a working program.

Exercise 8: (3) Write a program that demonstrates that, no matter how many objects
you create of a particular class, there is only one instance of a particular static field in that
class.

Exercise 9: (2) Write a program that demonstrates that autoboxing works for all the
primitive types and their wrappers.

Exercise 10: (2) Write a program that prints three arguments taken from the command
line. To do this, you’ll need to index into the command-line array of Strings.

Exercise 11: (1) Turn the AllITheColorsOfTheRainbow example into a program that
compiles and runs.

Exercise 12: (2) Find the code for the second version of HelloDate.java, which is the
simple comment documentation example. Execute Javadoc on the file and view the results
with your Web browser.

Exercise 13: (1) Run Documentationl.java, Documentation2.java, and
Documentation3.java through Javadoc. Verify the resulting documentation with your
Web browser.

Exercise 14: (1) Add an HTML list of items to the documentation in the previous
exercise.

Exercise 15: (1) Take the program in Exercise 2 and add comment documentation to it.
Extract this comment documentation into an HTML file using Javadoc and view it with
your Web browser.

Everything Is an Object 61

Exercise 16: (1) In the Initialization & Cleanup chapter, locate the Overloading.java
example and add Javadoc documentation. Extract this comment documentation into an
HTML file using Javadoc and view it with your Web browser.

62

Thinking in Java Bruce Eckel

Operators

At the lowest level, data in Java is manipulated using operators.

Because Java was inherited from C++, most of these operators will be familiar to C and C++
programmers. Java has also added some improvements and simplifications.

If you're familiar with C or C++ syntax, you can skim through this chapter and the next,
looking for places where Java is different from those languages. However, if you find yourself
floundering a bit in these two chapters, make sure you go through the multimedia seminar
Thinking in C, freely downloadable from www.MindView.net. It contains audio lectures,
slides, exercises, and solutions specifically designed to bring you up to speed with the
fundamentals necessary to learn Java.

Simpler print statements

In the previous chapter, you were introduced to the Java print statement:
System.out.println("Rather a lot to type");

You may observe that this is not only a lot to type (and thus many redundant tendon hits),
but also rather noisy to read. Most languages before and after Java have taken a much
simpler approach to such a commonly used statement.

The Access Control chapter introduces the concept of the static import that was added to
Java SEs5, and creates a tiny library to simplify writing print statements. However, you don’t
need to know those details in order to begin using that library. We can rewrite the program
from the last chapter using this new library:

//:. operators/HelloDate.java
import java.util.*;
import static net.mindview.util.Print.*;

public class HelloDate {
public static void main(String[] args) {
print("Hello, it’s: ");
print(new Date());

}
} /* OQutput: (55% match)
Hello, it’s:
Wed Oct 05 14:39:05 MDT 2005
11/~

The results are much cleaner. Notice the insertion of the static keyword in the second
import statement.

In order to use this library, you must download this book’s code package from
www.MindView.net or one of its mirrors. Unzip the code tree and add the root directory of
that code tree to your computer’s CLASSPATH environment variable. (You'll eventually get a
full introduction to the classpath, but you might as well get used to struggling with it early.
Alas, it is one of the more common battles you will have with Java.)

Although the use of net.mindview.util.Print nicely simplifies most code, it is not
justifiable everywhere. If there are only a small number of print statements in a program, I
forego the import and write out the full System.out.printin().

Exercise 1: (1) Write a program that uses the “short” and normal form of print
statement.

Using Java operators

An operator takes one or more arguments and produces a new value. The arguments are in a
different form than ordinary method calls, but the effect is the same. Addition and unary plus
(+), subtraction and unary minus (-), multiplication (*), division (/), and assignment (=) all
work much the same in any programming language.

All operators produce a value from their operands. In addition, some operators change the
value of an operand. This is called a side effect. The most common use for operators that
modify their operands is to generate the side effect, but you should keep in mind that the
value produced is available for your use, just as in operators without side effects.

Almost all operators work only with primitives. The exceptions are ‘=*, ‘=="and ‘!=‘, which
work with all objects (and are a point of confusion for objects). In addition, the String class
supports ‘+” and ‘+=",

Precedence

Operator precedence defines how an expression evaluates when several operators are
present. Java has specific rules that determine the order of evaluation. The easiest one to
remember is that multiplication and division happen before addition and subtraction.
Programmers often forget the other precedence rules, so you should use parentheses to make
the order of evaluation explicit. For example, look at statements (1) and (2):

//: operators/Precedence.java

public class Precedence {
public static void main(String[] args) {

int x =1, y =2, z=3;
inta=x+y - 2/2 + z; // (1)
intb=x+(y - 2)/(2 + z); /7 (2)
System.out.println("a =" + a + " b ="+ b);
}

} /* Qutput:

a=5b-=1

11/~

These statements look roughly the same, but from the output you can see that they have very
different meanings which depend on the use of parentheses.

Notice that the System.out.println() statement involves the ‘+’ operator. In this context,
‘+’ means “string concatenation” and, if necessary, “string conversion.” When the compiler
sees a String followed by a ‘+’ followed by a non-String, it attempts to convert the non-
String into a String. As you can see from the output, it successfully converts from int into
String for a and b.

64

Thinking in Java Bruce Eckel

Assignment

Assignment is performed with the operator =. It means “Take the value of the right-hand side
(often called the rvalue) and copy it into the left-hand side (often called the lvalue)”. An
rvalue is any constant, variable, or expression that produces a value, but an lvalue must be a
distinct, named variable. (That is, there must be a physical space to store the value.) For
instance, you can assign a constant value to a variable:

a = 4;

but you cannot assign anything to a constant value—it cannot be an lvalue. (You can’t say 4 =
a;.)

Assignment of primitives is quite straightforward. Since the primitive holds the actual value
and not a reference to an object, when you assign primitives, you copy the contents from one
place to another. For example, if you say a = b for primitives, then the contents of b are
copied into a. If you then go on to modify a, b is naturally unaffected by this modification. As
a programmer, this is what you can expect for most situations.

When you assign objects, however, things change. Whenever you manipulate an object, what
you’re manipulating is the reference, so when you assign “from one object to another,” you're
actually copying a reference from one place to another. This means that if you say ¢ = d for
objects, you end up with both ¢ and d pointing to the object that, originally, only d pointed
to. Here’s an example that demonstrates this behavior:

//: operators/Assignment.java
// Assignment with objects is a bit tricky.
import static net.mindview.util.Print.*;

class Tank {
int level;
}

public class Assignment {
public static void main(String[] args) {
Tank tl = new Tank();

Tank t2 new Tank();

tl.level = 9;

t2.level = 47;

print("1l: tl.level: " + tl.level +
", t2.level: " + t2.level);

tl = t2;

print("2: tl.level: " + tl.level +
", t2.1level: " + t2.level);
tl.level = 27;
print("3: tl.level: " + tl.level +
", t2.1level: " + t2.level);
}

} /* Qutput:

1: tl.level: 9, t2.level: 47
2: tl.level: 47, t2.level: 47
3: tl.level: 27, t2.level: 27
*

The Tank class is simple, and two instances (t1 and t2) are created within main(). The
level field within each Tank is given a different value, and then t2 is assigned to t1, and t1 is
changed. In many programming languages you expect t1 and t2 to be independent at all
times, but because you've assigned a reference, changing the t1 object appears to change the
t2 object as well! This is because both t1 and t2 contain the same reference, which is

Operators 65

pointing to the same object. (The original reference that was in t1, that pointed to the object
holding a value of 9, was overwritten during the assignment and effectively lost; its object
will be cleaned up by the garbage collector.)

This phenomenon is often called aliasing, and it’s a fundamental way that Java works with
objects. But what if you don’t want aliasing to occur in this case? You could forego the
assignment and say:

tl.level = t2.1level;

This retains the two separate objects instead of discarding one and tying t1 and t2 to the
same object. You’'ll soon realize that manipulating the fields within objects is messy and goes
against good object-oriented design principles. This is a nontrivial topic, so you should keep
in mind that assignment for objects can add surprises.

Exercise 2: (1) Create a class containing a float and use it to demonstrate aliasing.

Aliasing during method calls

Aliasing will also occur when you pass an object into a method:

//: operators/PassObject.java

// Passing objects to methods may not be
// what you’re used to.

import static net.mindview.util.Print.*;

class Letter {
char ¢;

}

public class PassObject {
static void f(Letter y) {
y.c = ‘z°;
}

public static void main(String[] args) {
Letter x = new Letter();

X.c = ‘a’;
print("l: x.c: " + x.C);
f(x);
print("2: x.c: " + x.Q);

}

} /* Qutput:

l1: x.c: a

2: X.C: z

X1/~

In many programming languages, the method f() would appear to be making a copy of its
argument Letter y inside the scope of the method. But once again a reference is being
passed, so the line

y.c = ‘z’;
is actually changing the object outside of f().

Aliasing and its solution is a complex issue which is covered in one of the online supplements
for this book. However, you should be aware of it at this point so you can watch for pitfalls.

66

Thinking in Java Bruce Eckel

Exercise 3: (1) Create a class containing a float and use it to demonstrate aliasing
during method calls.

Mathematical operators

The basic mathematical operators are the same as the ones available in most programming
languages: addition (+), subtraction (-), division (/), multiplication (*) and modulus (%,
which produces the remainder from integer division). Integer division truncates, rather than
rounds, the result.

Java also uses the shorthand notation from C/C++ that performs an operation and an
assignment at the same time. This is denoted by an operator followed by an equal sign, and is
consistent with all the operators in the language (whenever it makes sense). For example, to
add 4 to the variable x and assign the result to X, use: x += 4.

This example shows the use of the mathematical operators:

//: operators/MathOps.java

// Demonstrates the mathematical operators.
import java.util.*;

import static net.mindview.util.Print.*;

public class MathOps {
public static void main(String[] args) {
// Create a seeded random number generator:
Random rand = new Random(47);
int i, j, k;
// Choose value from 1 to 100:
j = rand.nextInt(100) + 1;

print("j " + 3);

k = rand.nextInt(100) + 1;
print("k : " + K);
i=3 + k;

print("j + k : " + 1);
i=173 - Kk;

print("j - k " + 1);
i=k/ J;

print("k / j @ " + 1i);
i =Kk * j;

print("k * j : " + 1i);
i=KkK%j;

print("k % j @ " + 1i);
i %= k;

print("j %=k : " + j);

// Floating-point number tests:
float u, v, w; // Applies to doubles, too
v = rand.nextFloat();

print("v : " + v);

w = rand.nextFloat();
print("w : " + w);
u=v + w;

print("v +w : " + u);
u=1v - Ww;

print("v - w @ " + u);
u=v * w;

print("v * w : " + u);
u=v/, w;

print("v / w @ " + u);

// The following also works for char,
// byte, short, int, long, and double:

Operators 67

u += v;

print("u +=v @ " + u);
u-=v;
print("u -=v : " + u);
u *= v;
print("u *= v " + u);
u/=v;
print("u /= v @ " + u);
}

} /* Output:

j 59

k : 56

j + k : 115

j -k 3

k /3 :0

k * j : 3304

kK % j : 56

i %=k @3

v 0.5309454

W 0.0534122

v + w : 0.5843576

V - W : 0.47753322

v * w : 0.028358962

v / w : 9.940527

u+=v 10.471473

u-=v 9.940527

u *=v 5.2778773

u/=v 9.940527

1]/~

To generate numbers, the program first creates a Random object. If you create a Random
object with no arguments, Java uses the current time as a seed for the random number
generator, and will thus produce different output for each execution of the program.
However, in the examples in this book, it is important that the output shown at the end of the
examples be as consistent as possible, so that this output can be verified with external tools.
By providing a seed (an initialization value for the random number generator that will always
produce the same sequence for a particular seed value) when creating the Random object,
the same random numbers will be generated each time the program is executed, so the
output is verifiable.! To generate more varying output, feel free to remove the seed in the
examples in the book.

The program generates a number of different types of random numbers with the Random
object simply by calling the methods nextInt() and nextFloat() (you can also call
nextLong() or nextDouble()). The argument to nextInt() sets the upper bound on the
generated number. The lower bound is zero, which we don’t want because of the possibility of
a divide-by-zero, so the result is offset by one.

Exercise 4: (2) Write a program that calculates velocity using a constant distance and a
constant time.

Unary minus and plus operators

The unary minus (-) and unary plus (+) are the same operators as binary minus and plus.
The compiler figures out which use is intended by the way you write the expression. For
instance, the statement

1 The number 47 was considered a “magic number” at a college I attended, and it stuck.

68

Thinking in Java Bruce Eckel

but the reader might get confused, so it is sometimes clearer to say:
| x = a * (-b);

Unary minus inverts the sign on the data. Unary plus provides symmetry with unary minus,
although it doesn’t have any effect.

Auto increment and decrement

Java, like C, has a number of shortcuts. Shortcuts can make code much easier to type, and
either easier or harder to read.

Two of the nicer shortcuts are the increment and decrement operators (often referred to as
the auto-increment and auto-decrement operators). The decrement operator is -- and means
“decrease by one unit.” The increment operator is ++ and means “increase by one unit.” If a
is an int, for example, the expression ++a is equivalent to (a = a + 1). Increment and
decrement operators not only modify the variable, but also produce the value of the variable
as a result.

There are two versions of each type of operator, often called the prefix and postfix versions.
Preincrement means the ++ operator appears before the variable, and post-increment
means the ++ operator appears after the variable. Similarly, pre-decrement means the --
operator appears before the variable, and post-decrement means the -- operator appears
after the variable. For pre-increment and pre-decrement (i.e., ++a or --a), the operation is
performed and the value is produced. For post-increment and post-decrement (i.e., a++ or
a--), the value is produced, then the operation is performed. As an example:

//: operators/Autolnc.java
// Demonstrates the ++ and -- operators.
import static net.mindview.util.Print.*;
public class AutoInc {
public static void main(String[] args) {
int i = 1;
print("i : " + 1i);
print("++i : " + ++i); // Pre-increment
print("i++ : " + i++); // Post-increment
print("i : " + 1i);
print("--i : " + --i); // Pre-decrement
print("i-- : " + i--); // Post-decrement
print("i : " + 1i);
}
} /* Qutput:
i1
++i o 2
ittt 2
i3
--i 2
i-- 2
i1
11/~

Operators 69

You can see that for the prefix form, you get the value after the operation has been
performed, but with the postfix form, you get the value before the operation is performed.
These are the only operators, other than those involving assignment, that have side effects—
they change the operand rather than using just its value.

The increment operator is one explanation for the name C++, implying “one step beyond C.”
In an early Java speech, Bill Joy (one of the Java creators), said that “Java=C++--" (C plus
plus minus minus), suggesting that Java is C++ with the unnecessary hard parts removed,
and therefore a much simpler language. As you progress in this book, you’ll see that many
parts are simpler, and yet in other ways Java isn’t much easier than C++.

Relational operators

Relational operators generate a boolean result. They evaluate the relationship between the
values of the operands. A relational expression produces true if the relationship is true, and
false if the relationship is untrue. The relational operators are less than (<), greater than
(>), less than or equal to (<=), greater than or equal to (>=), equivalent (==) and not
equivalent (1=). Equivalence and nonequivalence work with all primitives, but the other
comparisons won’t work with type boolean. Because boolean values can only be true or
false, “greater than” and “less than” doesn’t make sense.

Testing object equivalence

The relational operators == and != also work with all objects, but their meaning often
confuses the first-time Java programmer. Here’s an example:

//:. operators/Equivalence.java

public class Equivalence {
public static void main(String[] args) {
Integer nl = new Integer(47);
Integer n2 = new Integer(47);
System.out.println(nl == n2);
System.out.println(nl != n2);
}
} /* Qutput:
false
true
/1]~

The statement System.out.println(nl == n2) will print the result of the boolean
comparison within it. Surely the output should be “true” and then “false,” since both Integer
objects are the same. But while the contents of the objects are the same, the references are
not the same. The operators == and != compare object references, so the output is actually
“false” and then “true.” Naturally, this surprises people at first.

What if you want to compare the actual contents of an object for equivalence? You must use
the special method equals() that exists for all objects (not primitives, which work fine with
== and !=). Here’s how it’s used:

//: operators/EqualsMethod.java

public class EqualsMethod {
public static void main(String[] args) {
Integer nl = new Integer(47);
Integer n2 = new Integer(47);
System.out.println(nl.equals(n2));

70

Thinking in Java Bruce Eckel

}
} /* Output:
true
1]/~

The result is now what you expect. Ah, but it’s not as simple as that. If you create your own
class, like this:

//: operators/EqualsMethod2.java
// Default equals() does not compare contents.

class Value {
int i;

}

public class EqualsMethod2 {
public static void main(String[] args) {
Value vl = new Value();
Value v2 new Value();
vl.i = v2.1i = 100;
System.out.println(vl.equals(v2));

}
} /* Output:
false
*/]] i~

things are confusing again: The result is false. This is because the default behavior of
equals() is to compare references. So unless you override equals() in your new class you
won’t get the desired behavior. Unfortunately, you won’t learn about overriding until the
Reusing Classes chapter and about the proper way to define equals() until the Containers
in Depth chapter, but being aware of the way equals() behaves might save you some grief in
the meantime.

Most of the Java library classes implement equals() so that it compares the contents of
objects instead of their references.

Exercise 5: (2) Create a class called Dog containing two Strings: name and says. In
main(), create two dog objects with names “spot” (who says, “Ruff!”) and “scruffy” (who
says, “Wurf!”). Then display their names and what they say.

Exercise 6: (3) Following Exercise 5, create a new Dog reference and assign it to spot’s
object. Test for comparison using == and equals() for all references.

Logical operators

Each of the logical operators AND (&&), OR (]]) and NOT (!) produces a boolean value of
true or false based on the logical relationship of its arguments. This example uses the
relational and logical operators:

//: operators/Bool.java

// Relational and logical operators.
import java.util.*;

import static net.mindview.util.Print.*;

public class Bool {
public static void main(String[] args) {
Random rand = new Random(47);
int i = rand.nextInt(100);

Operators 71

int j = rand.nextInt(100);
print("i = " + 1i);
print("j = " + j);
print("i > j is "+ (i > j));
print("i < j is " + (i < j));
print("i >=j is " + (i >= j));
print("i <= j is " + (i <= j));
print("i == j is " + (i == j));
print("i =3 is " + (i !'= j));
// Treating an int as a boolean is not legal Java:
//) print("i && j is "+ (i && j));
7Y print("i [§ is "+ (3] 1))

/71 print("1i dis "+ li);
print("(i < 10) && (j < 10)

+ (1 < 10) & (j < 10))
print("(i < 10) || (j < 10) is

+ (1 < 10) [| (3 < 10))

~
.« n

~

* Qutput:

58

55

j is true

j is false

>= j is true

<= j is false

== j 1is false

= 3§ 1is true

(i < 10) &k (j < 10) is false
(i <10) |] (j < 10) is false
/1]~

AV I N

P P U S [S [B

—.

You can apply AND, OR, or NOT to boolean values only. You can’t use a non-boolean as if
it were a boolean in a logical expression as you can in C and C++. You can see the failed
attempts at doing this commented out with a ‘//"’ (this comment syntax enables automatic
removal of comments to facilitate testing). The subsequent expressions, however, produce
boolean values using relational comparisons, then use logical operations on the results.

Note that a boolean value is automatically converted to an appropriate text form if it is used
where a String is expected.

You can replace the definition for int in the preceding program with any other primitive data
type except boolean. Be aware, however, that the comparison of floating point numbers is
very strict. A number that is the tiniest fraction different from another number is still “not
equal.” A number that is the tiniest bit above zero is still nonzero.

Exercise 7: (3) Write a program that simulates coin-flipping.

Short-circuiting

When dealing with logical operators, you run into a phenomenon called “short-circuiting.”
This means that the expression will be evaluated only until the truth or falsehood of the
entire expression can be unambiguously determined. As a result, the latter parts of a logical
expression might not be evaluated. Here’s an example that demonstrates short-circuiting;:

//: operators/ShortCircuit.java

// Demonstrates short-circuiting behavior
// with logical operators.

import static net.mindview.util.Print.*;

72

Thinking in Java Bruce Eckel

public class ShortCircuit {
static boolean testl(int val) {
print("testl(" + val + ")");
print("result: " + (val < 1));
return val < 1;
}
static boolean test2(int val) {
print("test2(" + val + ")");
print("result: " + (val < 2));
return val < 2;
}
static boolean test3(int val) {
print("test3(" + val + ")");
print("result: " + (val < 3));
return val < 3;
}
public static void main(String[] args) {
boolean b = testl(0) && test2(2) && test3(2);
print("expression is " + b);
}
} /* OQutput:
test1(0)
result: true
test2(2)
result: false
expression is false
1]/~

Each test performs a comparison against the argument and returns true or false. It also
prints information to show you that it’s being called. The tests are used in the expression:

| testl1(0) &% test2(2) &% test3(2)

You might naturally think that all three tests would be executed, but the output shows
otherwise. The first test produced a true result, so the expression evaluation continues.
However, the second test produced a false result. Since this means that the whole expression
must be false, why continue evaluating the rest of the expression? It might be expensive. The
reason for shortcircuiting, in fact, is that you can get a potential performance increase if all
the parts of a logical expression do not need to be evaluated.

Literals

Ordinarily, when you insert a literal value into a program, the compiler knows exactly what
type to make it. Sometimes, however, the type is ambiguous. When this happens, you must
guide the compiler by adding some extra information in the form of characters associated
with the literal value. The following code shows these characters:

//: operators/Literals.java
import static net.mindview.util.Print.*;

public class Literals {

public static void main(String[] args) {
int il = Ox2f; // Hexadecimal (lowercase)
print("il: " + Integer.toBinaryString(il));
int i2 = OX2F; // Hexadecimal (uppercase)
print("i2: " + Integer.toBinaryString(i2));
int i3 = 0177; // Octal (leading zero)
print("i3: " + Integer.toBinaryString(i3));
char ¢ = Oxffff; // max char hex value

Operators 73

print("c: " + Integer.toBinaryString(c));
byte b = 0x7f; // max byte hex value

print("b: " + Integer.toBinaryString(b));
short s = Ox7fff; // max short hex value
print("s: " + Integer.toBinaryString(s));

long nl = 200L; // long suffix

long n2 = 2001; // long suffix (but can be confusing)
long n3 = 200;

float f1l = 1;

float f2 = 1F; // float suffix

float f3 = 1f; // float suffix

double dl1 = 1d; // double suffix
double d2 = 1D; // double suffix
// (Hex and Octal also work with long)

}
} /* Qutput:
il: 101111
i2: 101111
i3: 1111111
c: 1111111111111111
b: 1111111
s: 111111111111111
X[/~

A trailing character after a literal value establishes its type. Uppercase or lowercase L means
long (however, using a lowercase | is confusing because it can look like the number one).
Uppercase or lowercase F means float. Uppercase or lowercase D means double.

Hexadecimal (base 16), which works with all the integral data types, is denoted by a leading
Ox or OX followed by 0-9 or a-f either in uppercase or lowercase. If you try to initialize a
variable with a value bigger than it can hold (regardless of the numerical form of the value),
the compiler will give you an error message. Notice in the preceding code the maximum
possible hexadecimal values for char, byte, and short. If you exceed these, the compiler will
automatically make the value an int and tell you that you need a narrowing cast for the
assignment (casts are defined later in this chapter). You’ll know you’ve stepped over the line.

Octal (base 8) is denoted by a leading zero in the number and digits from o-7.

There is no literal representation for binary numbers in C, C++, or Java. However, when
working with hexadecimal and octal notation, it’s useful to display the binary form of the
results. This is easily accomplished with the static toBinaryString() methods from the
Integer and Long classes. Notice that when passing smaller types to
Integer.toBinaryString(), the type is automatically converted to an int.

Exercise 8: (2) Show that hex and octal notations work with long values. Use
Long.toBinaryString() to display the results.

Exponential notation

Exponents use a notation that I've always found rather dismaying:

//: operators/Exponents.java
// "e" means "10 to the power."

public class Exponents {
public static void main(String[] args) {
// Uppercase and lowercase ‘e’ are the same:
float expFloat = 1.39e-43f;
expFloat = 1.39E-43f;

74

Thinking in Java Bruce Eckel

System.out.println(expFloat);
double expDouble = 47e47d; // ‘d’ 1is optional
double expDouble2 = 47e47; // Automatically double
System.out.println(expDouble) ;
}
} /* Qutput:
1.39E-43
4.7EA8
11/~

In science and engineering, ‘e’ refers to the base of natural logarithms, approximately 2.718.
(A more precise double value is available in Java as Math.E.) This is used in exponentiation
expressions such as 1.39 x e43, which means 1.39 x 2.71843. However, when the FORTRAN
programming language was invented, they decided that e would mean “ten to the power”,
which is an odd decision because FORTRAN was designed for science and engineering, and
one would think its designers would be sensitive about introducing such an ambiguity.2 At
any rate, this custom was followed in C, C++ and now Java. So if you're used to thinking in
terms of e as the base of natural logarithms, you must do a mental translation when you see
an expression such as 1.39 e-43f in Java; it means 1.39 X 10743,

Note that you don’t need to use the trailing character when the compiler can figure out the
appropriate type. With

| long n3 = 200;
there’s no ambiguity, so an L after the 200 would be superfluous. However, with
| float f4 = 1le-43f; // 10 to the power

the compiler normally takes exponential numbers as doubles, so without the trailing f, it will
give you an error telling you that you must use a cast to convert double to float.

Exercise 9: (1) Display the largest and smallest numbers for both float and double
exponential notation.

Bitwise operators

The bitwise operators allow you to manipulate individual bits in an integral primitive data
type. Bitwise operators perform Boolean algebra on the corresponding bits in the two
arguments to produce the result.

The bitwise operators come from C’s low-level orientation, where you often manipulate
hardware directly and must set the bits in hardware registers. Java was originally designed to
be embedded in TV set-top boxes, so this low-level orientation still made sense. However,
you probably won’t use the bitwise operators much.

2 John Kirkham writes, “I started computing in 1962 using FORTRAN II on an IBM 1620. At that time, and throughout
the 1960s and into the 1970s, FORTRAN was an all uppercase language. This probably started because many of the early
input devices were old teletype units that used 5 bit Baudot code, which had no lowercase capability. The ‘E’ in the
exponential notation was also always uppercase and was never confused with the natural logarithm base ‘e’, which is
always lowercase. The ‘E’ simply stood for exponential, which was for the base of the number system used—usually 10. At
the time octal was also widely used by programmers. Although I never saw it used, if I had seen an octal number in
exponential notation I would have considered it to be base 8. The first time I remember seeing an exponential using a
lowercase ‘e’ was in the late 1970s and I also found it confusing. The problem arose as lowercase crept into FORTRAN, not
at its beginning. We actually had functions to use if you really wanted to use the natural logarithm base, but they were all
uppercase.”

Operators 75

The bitwise AND operator (&) produces a one in the output bit if both input bits are one;
otherwise, it produces a zero. The bitwise OR operator (]) produces a one in the output bit if
either input bit is a one and produces a zero only if both input bits are zero. The bitwise
EXCLUSIVE OR, or XOR (©), produces a one in the output bit if one or the other input bit is
a one, but not both. The bitwise NOT (~, also called the ones complement operator) is a
unary operator; it takes only one argument. (All other bitwise operators are binary
operators.) Bitwise NOT produces the opposite of the input bit—a one if the input bit is zero,
a zero if the input bit is one.

The bitwise operators and logical operators use the same characters, so it is helpful to have a
mnemonic device to help you remember the meanings: Because bits are “small”, there is only
one character in the bitwise operators.

Bitwise operators can be combined with the = sign to unite the operation and assignment:
&=, |= and "= are all legitimate. (Since ~ is a unary operator, it cannot be combined with
the = sign.)

The boolean type is treated as a one-bit value, so it is somewhat different. You can perform
a bitwise AND, OR, and XOR, but you can’t perform a bitwise NOT (presumably to prevent
confusion with the logical NOT). For booleans, the bitwise operators have the same effect as
the logical operators except that they do not short circuit. Also, bitwise operations on
booleans include an XOR logical operator that is not included under the list of “logical”
operators. You cannot use booleans in shift expressions, which are described next.

Exercise 10: (3) Write a program with two constant values, one with alternating binary
ones and zeroes, with a zero in the least-significant digit, and the second, also alternating,
with a one in the least-significant digit (hint: It’s easiest to use hexadecimal constants for
this). Take these two values and combine them in all possible ways using the bitwise
operators, and display the results using Integer.toBinaryString().

Shift operators

The shift operators also manipulate bits. They can be used solely with primitive, integral
types. The left-shift operator (<<) produces the operand to the left of the operator after it has
been shifted to the left by the number of bits specified to the right of the operator (inserting
zeroes at the lower-order bits). The signed right-shift operator (>>) produces the operand to
the left of the operator after it has been shifted to the right by the number of bits specified to
the right of the operator. The signed right shift >> uses sign extension: If the value is
positive, zeroes are inserted at the higher-order bits; if the value is negative, ones are inserted
at the higher-order bits. Java has also added the unsigned right shift >>>, which uses zero
extension: Regardless of the sign, zeroes are inserted at the higher-order bits. This operator
does not exist in C or C++.

If you shift a char, byte, or short, it will be promoted to int before the shift takes place, and
the result will be an int. Only the five low-order bits of the right-hand side will be used. This
prevents you from shifting more than the number of bits in an int. If you’re operating on a
long, you'll get a long result. Only the six low-order bits of the right-hand side will be used,
so you can’t shift more than the number of bits in a long.

Shifts can be combined with the equal sign (<<= or >>= or >>>=). The Ivalue is replaced by
the lvalue shifted by the rvalue. There is a problem, however, with the unsigned right shift
combined with assignment. If you use it with byte or short, you don’t get the correct results.
Instead, these are promoted to int and right shifted, but then truncated as they are assigned
back into their variables, so you get -1 in those cases. The following example demonstrates
this:

76

Thinking in Java Bruce Eckel

//: operators/URShift.java
// Test of unsigned right shift.
import static net.mindview.util.Print.*;

public class URShift {
public static void main(String[] args) {
int i = -1;
print(Integer.toBinaryString(i));
i >>>= 10;
print(Integer.toBinaryString(i));
long 1 = -1;
print(Long.toBinaryString(l));
1 >>>=]_@;
print(Long.toBinaryString(l));
short s = -1;
print(Integer.toBinaryString(s));
s >>>= 10;
print(Integer.toBinaryString(s));
byte b = -1;
print(Integer.toBinaryString(b));
b >>>=]_@;
print(Integer.toBinaryString(b));
b =-1;
print(Integer.toBinaryString(b));
print(Integer.toBinaryString(b>>>10));
}
} /* Output:
11111111111111111111111111111111
1111111111111111111111
1111111111111111111112111
1111111111111111111112111111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
11111111111111111111111111111111
1111111111111111111111
/1]~

In the last shift, the resulting value is not assigned back into b, but is printed directly, so the
correct behavior occurs.

Here’s an example that demonstrates the use of all the operators involving bits:

//: operators/BitManipulation.java

// Using the bitwise operators.

import java.util.*;

import static net.mindview.util.Print.*;

public class BitManipulation {
public static void main(String[] args) {

Random rand = new Random(47);
int i = rand.nextInt();
int j = rand.nextInt();
printBinaryInt("-1", -1);
printBinaryInt("+1", +1);
int maxpos = 2147483647,
printBinaryInt("maxpos", maxpos);
int maxneg = -2147483648;
printBinaryInt("maxneg", maxneg);
printBinaryInt("i", 1i);

printBinaryInt("~i", ~i);

Operators 77

printBinaryInt("-i", -1);

printBinaryInt("j", j);

printBinaryInt("i & j", i & j);
printBinaryInt("i | ", i | j);
printBinaryInt("i ~ j", i ™ j);

printBinaryInt("i << 5", i << 5);
printBinaryInt("i >> 5", i >> 5);
printBinaryInt("(~i) >> 5", (~i) >> 5);
printBinaryInt("i >>> 5", i >>> 5);
printBinaryInt("(~i) >>> 5", (~i) >>> 5)

long 1 = rand.nextLong();

long m = rand.nextLong();
printBinaryLong("-1L", -1L);
printBinaryLong("+1L", +1L);

long 11 = 9223372036854775807L;
printBinaryLong("maxpos", 11);

long 11ln = -9223372036854775808L;
printBinaryLong("maxneg", 11n);
printBinaryLong("1", 1);
printBinaryLong("~1", ~1);
printBinaryLong("-1", -1);
printBinaryLong("m", m);
printBinaryLong ("1 & m", 1 & m);
printBinaryLong ("1 | m", 1 | m);
printBinaryLong("1 * m", 1 "~ m);
printBinaryLong("1 << 5", 1 << 5);
printBinaryLong("1 >> 5", 1 >> 5);
printBinaryLong("(~1) >> 5", (~1) >> 5);
printBinaryLong("1 >>> 5", 1 >>> 5);

printBinaryLong("(~1) >>> 5", (~1) >>> 5);

}
static void printBinaryInt(String s, int i) {
print(s + ", int: " + i + ", binary:\n
Integer.toBinaryString(i));
}
static void printBinaryLong(String s, long 1) {
print(s + ", long: " + 1 + ", binary:\n
Long.toBinaryString(l));
}
} /* Qutput:

-1, int: -1, binary:
11111111111111111111111111111111
+1, int: 1, binary:
1
maxpos, int: 2147483647, binary:
1111111111111111111111111111111
maxneg, int: -2147483648, binary:
10000000000000000000000000000000
i, int: -1172028779, binary:
10111010001001000100001010010101
~i, int: 1172028778, binary:
1000101110110111011110101101010
-i, int: 1172028779, binary:
1000101110110111011110101101011
j, int: 1717241110, binary:
1100110010110110000010100010110
i & j, int: 570425364, binary:
100010000000000000000000010100
i] j, int: -25213033, binary:
1111111060111111101000111160010111
i N j, int: -595638397, binary:
110111000111111101000111160000011

+

+

78

Thinking in Java

Bruce Eckel

i << 5, int: 1149784736, binary:
1000100100010000101001010100000

i >> 5, int: -36625900, binary:
11111101110100010010001000010100

(~i) >> 5, int: 36625899, binary:
10001011101101110111101011

i >>> 5, int: 97591828, binary:
101110100010010001000010100

(~i) >>> 5, int: 36625899, binary:
10001011101101110111101011

/11~

The two methods at the end, printBinarylInt() and printBinaryLong(), take an intora
long, respectively, and print it out in binary format along with a descriptive string. As well as
demonstrating the effect of all the bitwise operators for int and long, this example also
shows the minimum, maximum, +1, and -1 values for int and long so you can see what they
look like. Note that the high bit represents the sign: 0 means positive and 1 means negative.
The output for the int portion is displayed above.

The binary representation of the numbers is referred to as signed twos complement.

Exercise 11: (3) Start with a number that has a binary one in the most significant
position (hint: Use a hexadecimal constant). Using the signed right-shift operator, right shift
it all the way through all of its binary positions, each time displaying the result using
Integer.toBinaryString().

Exercise 12: (3) Start with a number that is all binary ones. Left shift it, then use the
unsigned right-shift operator to right shift through all of its binary positions, each time
displaying the result using Integer.toBinaryString().

Exercise 13: (1) Write a method that displays char values in binary form. Demonstrate
it using several different characters.

Ternary if-else operator

The ternary operator, also called the conditional operator, is unusual because it has three
operands. It is truly an operator because it produces a value, unlike the ordinary if-else
statement that you’ll see in the next section of this chapter. The expression is of the form:

boolean-exp ? value® : valuel

If boolean-exp evaluates to true, valueO is evaluated, and its result becomes the value
produced by the operator. If boolean-exp is false, valuel is evaluated and its result becomes
the value produced by the operator.

Of course, you could use an ordinary if-else statement (described later), but the ternary
operator is much terser. Although C (where this operator originated) prides itself on being a
terse language, and the ternary operator might have been introduced partly for efficiency,
you should be somewhat wary of using it on an everyday basis—it’s easy to produce
unreadable code.

The conditional operator is different from if-else because it produces a value. Here’s an
example comparing the two:

//: operators/TernaryIfElse.java

Operators 79

import static net.mindview.util.Print.*;

public class TernaryIfElse {
static int ternary(int i) {
return i < 10 ? i * 100 : i * 10;
}
static int standardIfElse(int i) {
if(i < 10)
return i * 100;
else
return i * 10;
}
public static void main(String[] args) {
print(ternary(9));
print(ternary(10));
print(standardIfElse(9));
print(standardIfElse(10));
}
} /* Output:
900
100
900
100
11/~

You can see that this code in ternary() is more compact than what you’d need to write
without the ternary operator, in standardIfElse(). However, standardIfElse() is easier
to understand, and doesn’t require a lot more typing. So be sure to ponder your reasons when
choosing the ternary operator—it’s generally warranted when you’re setting a variable to one
of two values.

String operator + and +=

There’s one special usage of an operator in Java: The + and += operators can be used to
concatenate strings, as you've already seen. It seems a natural use of these operators even
though it doesn’t fit with the traditional way that they are used.

This capability seemed like a good idea in C++, so operator overloading was added to C++ to
allow the C++ programmer to add meanings to almost any operator. Unfortunately, operator
overloading combined with some of the other restrictions in C++ turns out to be a fairly
complicated feature for programmers to design into their classes. Although operator
overloading would have been much simpler to implement in Java than it was in C++ (as has
been demonstrated in the C# language, which does have straightforward operator
overloading), this feature was still considered too complex, so Java programmers cannot
implement their own overloaded operators like C++ and C# programmers can.

The use of the String operators has some interesting behavior. If an expression begins with a
String, then all operands that follow must be Strings (remember that the compiler
automatically turns a double-quoted sequence of characters into a String):

//: operators/StringOperators.java
import static net.mindview.util.Print.*;

public class StringOperators {
public static void main(String[] args) {
int x =0, y=1, z=2;
String s = "x, y, z ";
print(s + x +y + z);
print(x + " " + s); // Converts x to a String

80 Thinking in Java Bruce Eckel

s += "(summed) = "; // Concatenation operator
print(s + (x +y + 2));
print("" + x); // Shorthand for Integer.toString()
}

} /* OQutput:

X, Yy, z 012

0 x, vy, z

X, Yy, z (summed) = 3

0

1]/~

Note that the output from the first print statement is ‘012’ instead of just ‘3’, which is what
you’d get if it was summing the integers. This is because the Java compiler converts X, y, and
z into their String representations and concatenates those strings, instead of adding them
together first. The second print statement converts the leading variable into a String, so the
string conversion does not depend on what comes first. Finally, you see the use of the +=
operator to append a string to s, and the use of parentheses to control the order of evaluation
of the expression so that the ints are actually summed before they are displayed.

Notice the last example in main(): you will sometimes see an empty String followed by a +
and a primitive as a way to perform the conversion without calling the more cumbersome
explicit method (Integer.toString(), in this case).

Common pitfalls when using operators

One of the pitfalls when using operators is attempting to leave out the parentheses when you
are even the least bit uncertain about how an expression will evaluate. This is still true in
Java.

An extremely common error in C and C++ looks like this:

while(x = vy) {
// .
}

The programmer was clearly trying to test for equivalence (==) rather than do an
assignment. In C and C++ the result of this assignment will always be true if y is nonzero,
and you’ll probably get an infinite loop. In Java, the result of this expression is not a
boolean, but the compiler expects a boolean and won’t convert from an int, so it will
conveniently give you a compile-time error and catch the problem before you ever try to run
the program. So the pitfall never happens in Java. (The only time you won’t get a compile-
time error is when x and y are boolean, in which case x =y is a legal expression, and in the
preceding example, probably an error.)

A similar problem in C and C++ is using bitwise AND and OR instead of the logical versions.
Bitwise AND and OR use one of the characters (& or |) while logical AND and OR use two
(&& and |]). Just as with = and ==, it’s easy to type just one character instead of two. In
Java, the compiler again prevents this, because it won’t let you cavalierly use one type where
it doesn’t belong.

Casting operators

The word cast is used in the sense of “casting into a mold.” Java will automatically change
one type of data into another when appropriate. For instance, if you assign an integral value
to a floating point variable, the compiler will automatically convert the int to a float. Casting

Operators 81

allows you to make this type conversion explicit, or to force it when it wouldn’t normally
happen.

To perform a cast, put the desired data type inside parentheses to the left of any value. You
can see this in the following example:

//: operators/Casting.java

public class Casting {
public static void main(String[] args) {
int i = 200;
long 1ng = (long)i;
lng = 1i; // "Widening," so cast not really required
long 1ng2 = (long)200;
1ng2 = 200;
// A "narrowing conversion":
i = (int)lng2; // Cast required
}
Y I~

As you can see, it’s possible to perform a cast on a numeric value as well as on a variable.
Notice that you can introduce superfluous casts; for example, the compiler will automatically
promote an int value to a long when necessary. However, you are allowed to use superfluous
casts to make a point or to clarify your code. In other situations, a cast may be essential just
to get the code to compile.

In C and C++, casting can cause some headaches. In Java, casting is safe, with the exception
that when you perform a so-called narrowing conversion (that is, when you go from a data
type that can hold more information to one that doesn’t hold as much), you run the risk of
losing information. Here the compiler forces you to use a cast, in effect saying, “This can be a
dangerous thing to do—if you want me to do it anyway you must make the cast explicit.” With
a widening conversion an explicit cast is not needed, because the new type will more than
hold the information from the old type so that no information is ever lost.

Java allows you to cast any primitive type to any other primitive type, except for boolean,
which doesn’t allow any casting at all. Class types do not allow casting. To convert one to the
other, there must be special methods. (Youll find out later in this book that objects can be
cast within a family of types; an Oak can be cast to a Tree and vice versa, but not to a
foreign type such as a Rock.)

Truncation and rounding

When you are performing narrowing conversions, you must pay attention to issues of
truncation and rounding. For example, if you cast from a floating point value to an integral
value, what does Java do? For example, if you have the value 29.7 and you cast it to an int, is
the resulting value 30 or 29? The answer to this can be seen in this example:

//: operators/CastingNumbers.java

// What happens when you cast a float

// or double to an integral value?
import static net.mindview.util.Print.*;

public class CastingNumbers {
public static void main(String[] args) {
double above = 0.7, below = 0.4;
float fabove = 0.7f, fbelow = 0.4f;
print("(int)above: " + (int)above);
print("(int)below: " + (int)below);
print("(int)fabove: " + (int)fabove);

82

Thinking in Java Bruce Eckel

print("(int)fbelow: " + (int)fbelow);
}

} /* Output:

(int)above: 0

(int)below: 0

(int)fabove: 0

(int)fbelow: 0

X[/~

So the answer is that casting from a float or double to an integral value always truncates
the number. If instead you want the result to be rounded, use the round() methods in
java.lang.Math:

//: operators/RoundingNumbers.java
// Rounding floats and doubles.
import static net.mindview.util.Print.*;

public class RoundingNumbers {
public static void main(String[] args) {

double above = 0.7, below = 0.4;
float fabove = 0.7f, fbelow 0.4f;
print("Math.round(above): " Math.round(above));
print("Math.round(below): " Math.round(below)) ;
print("Math.round(fabove): " + Math.round(fabove));
print("Math.round(fbelow): " + Math.round(fbelow));

+ + 1

}
} /* Qutput:
Math.round(above): 1
Math.round(below): 0
Math.round(fabove): 1
Math.round(fbelow): ©
*/]] i~

Since the round() is part of java.lang, you don’t need an extra import to use it.

Promotion

You’ll discover that if you perform any mathematical or bitwise operations on primitive data
types that are smaller than an int (that is, char, byte, or short), those values will be
promoted to int before performing the operations, and the resulting value will be of type int.
So if you want to assign back into the smaller type, you must use a cast. (And, since you're
assigning back into a smaller type, you might be losing information.) In general, the largest
data type in an expression is the one that determines the size of the result of that expression;
if you multiply a float and a double, the result will be double; if you add an int and a
long, the result will be long.

Java has no “sizeof”

In C and C++, the sizeof() operator tells you the number of bytes allocated for data items.
The most compelling reason for sizeof() in C and C++ is for portability. Different data types
might be different sizes on different machines, so the programmer must discover how big
those types are when performing operations that are sensitive to size. For example, one
computer might store integers in 32 bits, whereas another might store integers as 16 bits.
Programs could store larger values in integers on the first machine. As you might imagine,
portability is a huge headache for C and C++ programmers.

Operators 83

Java does not need a sizeof() operator for this purpose, because all the data types are the
same size on all machines. You do not need to think about portability on this level—it is
designed into the language.

compendium of operators

The following example shows which primitive data types can be used with particular
operators. Basically, it is the same example repeated over and over, but using different
primitive data types. The file will compile without error because the lines that fail are
commented out with a //!.

//: operators/Al10ps.java
// Tests all the operators on all the primitive data types
// to show which ones are accepted by the Java compiler.

public class All0ps {
// To accept the results of a boolean test:
void f(boolean b) {}
void boolTest(boolean x, boolean y) {
// Arithmetic operators:

/7Y x = x *y;
/7Y x =x [/ y;
/7Y x =X %Y,
[/ x = x +y;
/7Y x = x - y;
/1 x++;

/7Y x--;

/1Y x = +y;

/1Y x = -y;

// Relational and logical:
/7)Y f(x > y);
/7Y f(x >=y);
/7Y f(x < y);
/7Y f(x <=y);
f(x ==1vy);

f(x 1=y);
fCly)s

X =X && y;

x = x || y;

// Bitwise operators:
/1Y X = ~y;

X =X &y,

x =x|y;

X = x Ny;

/7Y x = x << 1;
//V x = x >> 1;
//V x = x >>> 1;
// Compound assignment:
/1l X +=y;

/1Y x -=y;

/1Y x *=y;

/1Y x /=y;

/1Y X %=y;

/11 x <<= 1;

[/t x >>=1;

/10 x >>>= 1,

X &= y;

X "=vy;

X |=y;

// Casting:

84

Thinking in Java Bruce Eckel

//! char c (char)x;
//! byte b (byte)x;
//! short s = (short)x;
//) int i = (int)x;
//' long 1 = (long)x;
//) float f = (float)x;
//! double d = (double)x;
}
void charTest(char x, char y) {
// Arithmetic operators:

X = (char)(x * y);
X = (char)(x / y);
X = (char)(x % y);
X = (char)(x + y);
X = (char)(x - vy);
X++

X__

X = (char)+y;

X = (char)-y;

// Relational and logical:
f(x >vy);

f(x >=y);

f(x <vy);

f(x <=vy);

f(x ==1vy);

f(x 1'=y);

/7Y F(Ix);

/7Y f(x && y);
/7Y x|y
// Bitwise operators:
x= (char)~y;

(char) (x & y);
= (char)(x | y);
(char) (x "~ y);
(char) (x << 1);
(char)(x >> 1);
(char) (x >>> 1);
/ Compound assignment:
+=y,;

i

* = y;

/=y;

%=y;

<= 1;

>>= 1;

>>>= 1;

&= y;

A= y;
X |=y;
// Casting:
//! boolean bl = (boolean)x;
byte b = (byte)x;
short s = (short)x;
int i = (int)x;

long 1 = (long)x;
float f = (float)x;
double d = (double)x;

x
1]

X X X X X X X X X X NX X X X X

}
void byteTest(byte x, byte y) {
// Arithmetic operators:

x = (byte) (x* y);
x = (byte)(x / y);
x = (byte)(x % y);

Operators

x = (byte)(x + y);
x = (byte)(x - y);

’

x = (byte)+ y;
x = (byte)- vy;
// Relational
f(x >vy);

f(x >=y);

f(x <vy);

f(x <=y);

f(x ==1y);

f(x !'=y);

/7 f('x);

/7Y f(x && y);
[0 f (x|] YD)

and logical:

// Bitwise operators:

X (byte)~y;

(byte) (x |

(byte) (x *
(byte) (x << 1);
(byte) (x >> 1);
(byte) (x >>> 1);

(byte) (x & y);

y)s
y)s

/ Compound assignment:

+= y;

X X X X X X X X X X NX X X X X X
1
I}
<

x
|

// Casiing:

//! boolean bl

= (boolean)x;

char ¢ = (char)x;

short s

(short)x;

int i = (int)x;

long 1 = (long)x;
float f = (float)x;
double d = (double)x;

}

void shortTest(short x, short y) {

// Arithmetic

X = (short) (x
X = (short) (x
X = (short) (x
X = (short) (x
X = (short) (x
X++

X_-

X = (short)+y;
X = (short)-y;
// Relational
f(x >vy);

f(x >=y);

f(x <y);

f(x <=y);

f(x ==y);

f(x '=y);

operators:
*y);
/y);
% Y);
+y);
-y

and logical:

86

Thinking in Java

Bruce Eckel

/7Y f(!'x);

/70 f(x && y);
7Yy

// Bitwise operators:

X = (short)~y;

X = (short) (x & y);

x = (short)(x | y);

X = (short)(x ™ vy);

X = (short)(x << 1);
X = (short)(x >> 1);
X = (short)(x >>> 1);
// Compound assignment:
X +=y;

X -=y;

X *=y;

X /=y;

X %= Y;

X <<= 1;

X >>=1;

X >>>= 1;

X &= vy;

X "=y,

X [=y;

// Casting:

//! boolean bl = (boolean)x;
char ¢ = (char)x;
byte b = (byte)x;

int i = (int)x;

long 1 = (long)x;
float f = (float)x;
double d = (double)x;

}
void intTest(int x, int y) {
// Arithmetic operators:
X = x *y;
X =x17Yy;
X =X%YVY;
X =X +Y;
X =X -Y;
X++;
X==3
X = +y;
X = -y,
// Relational and logical:
f(x >y);
f(x >=y);
f(x <y);
f(x <=y);
f(x ==1y);
f(x !=1y);
/7)Y f(Ix);
/7Y f(x && y);
77 f Yy
// Bitwise operators:
X = ~y;
X =X &Vy;
X =x|vy;
x =x "y,
X = x << 1;
X =x > 1;
X =x >>>1;

// Compound assignment:
X +=y;

’

Operators

87

}

&=y;

A= y;
X |=y;
// Casting:
//! boolean bl = (boolean)x;
char ¢ = (char)x;
byte b = (byte)x;
short s = (short)x;
long 1 = (long)x;
float f = (float)x;
double d = (double)x;

X X X X X X X X X
A
A
1]
—

void longTest(long x, long y) {

// Arithmetic operators:

X =X *vy;
X =x17Y;
X =X %Y;
X =X +vy;
X =X -y,
X++;

X--3

X = +y;

X = -y;

// Relational and logical:
f(x >vy);
f(x >=y);
f(x <y);
f(x <=y);
f(x ==1vy);
f(x I=y);
/7Y F(Ix);

/7Y f(x && y);
7Yy

// Bitwise operators:
X ~y;

& y;

l y;

y;
<< 1;
>> 1;
X >>> 1;

/ Compound assignment:

X X X X X

X X X X X X X X X X NX X X X X X
1
I}
<

x

[=y;

// Casting:

//! boolean bl = (boolean)x;
char ¢ = (char)x;

88

Thinking in Java

Bruce Eckel

byte b = (byte)x;
short s (short)x;
int i = (int)x;

float f = (float)x;
double d = (double)x;

}

void floatTest(float x, float y) {
// Arithmetic operators:
X X *vy;
X /Y

%Y

+y’

-y

X X X X

+y,

-y

// Relational and logical:
f(x >y);

f(x >=y);

f(x <y);

f(x <=vy);

f(x ==1y);

f(x !'=y);

/7Y f(!'x);

[/ f(x && y);
77y

// Bitwise operators:

/7! X ~y
/7!
/7!
e
e
e >> 1;

/71 X X >>> 1;

// Compound assignment:
X +=y;

X
X
X
X
/71!
e
/7!

X X X X X X X
+
+

’

’

&
I
N

<< <

’

<< 1:

’

X X X X X
LI | | B T T R |

X X X X X

E
TR
<K< <<

X2~

’

<<= 1:

>>= 1;
>>>= 1;
A &= vy;

/7! A=y

/1Y x |=y;

// Casting:

//! boolean bl = (boolean)x;
char ¢ = (char)x;

byte b = (byte)x;

short s = (short)x;

int 1 = (int)x;

long 1 = (long)Xx;

double d = (double)x;

X X X X X

}
void doubleTest(double x, double y) {

// Arithmetic operators:

X = x *y;
X =x17Yy;
X =X%YVY;
X =X +y;
X =X -Y;

Operators

X__

X = +y;

X = -y;

// Relational and logical:
f(x >y);
f(x >=y);
f(x <vy);
f(x <=y);
f(x ==y);
f(x !'=1y);
/7 f('x);

/7Y f(x && y);

/7Y F(x Il y)s

// Bitwise operators:
/7! X ~Y;
A & y;
e | y
e Ny
/7!
A >> 1;

/7! X X >>> 1;

// Compound assignment:
X +=y;

X -=Y;

X *=y;

X /=y;

X %=y,

A <<= 1;

A >>= 1;
/17! >>>= 1;
A &= vy;

/7! A=y

/1Y X |=y;

// Casting:

//! boolean bl = (boolean)x;
char ¢ = (char)x;

byte b = (byte)x;

short s = (short)x;

int i = (int)x;

long 1 = (long)x;

float f = (float)x;

’
’
’

<< 1:

X X X X X
{1 | A 1 | R 1}

X X X X X

X X X X X

}
Yy I~

Note that boolean is quite limited. You can assign to it the values true and false, and you
can test it for truth or falsehood, but you cannot add booleans or perform any other type of
operation on them.

In char, byte, and short, you can see the effect of promotion with the arithmetic operators.
Each arithmetic operation on any of those types produces an int result, which must be
explicitly cast back to the original type (a narrowing conversion that might lose information)
to assign back to that type. With int values, however, you do not need to cast, because
everything is already an int. Don’t be lulled into thinking everything is safe, though. If you
multiply two ints that are big enough, you’ll overflow the result. The following example
demonstrates this:

//: operators/Overflow.java
// Surprise! Java lets you overflow.

public class Overflow {
public static void main(String[] args) {

90

Thinking in Java Bruce Eckel

int big = Integer.MAX_VALUE;
System.out.println("big = " + big);
int bigger = big * 4;
System.out.println("bigger = " + bigger);
}

} /* Qutput:

big = 2147483647

bigger = -4

11/~

You get no errors or warnings from the compiler, and no exceptions at run time. Java is good,
but it’s not that good.

Compound assignments do not require casts for char, byte, or short, even though they are
performing promotions that have the same results as the direct arithmetic operations. On the
other hand, the lack of the cast certainly simplifies the code.

You can see that, with the exception of boolean, any primitive type can be cast to any other
primitive type. Again, you must be aware of the effect of a narrowing conversion when
casting to a smaller type; otherwise, you might unknowingly lose information during the cast.

Exercise 14: (3) Write a method that takes two String arguments and uses all the
boolean comparisons to compare the two Strings and print the results. For the == and !=,
also perform the equals() test. In main(), call your method with some different String
objects.

Summary

If you've had experience with any languages that use C-like syntax, you can see that the
operators in Java are so similar that there is virtually no learning curve. If you found this
chapter challenging, make sure you view the multimedia presentation Thinking in C,
available at www.MindView.net.

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide,
available for sale from www.MindView.net.

Operators 91

Controlling Execution

Like a sentient creature, a program must manipulate its world and
make choices during execution. In Java you make choices with
execution control statements.

Java uses all of C’s execution control statements, so if you've programmed with C or C++,
then most of what you see will be familiar. Most procedural programming languages have
some kind of control statements, and there is often overlap among languages. In Java, the
keywords include if-else, while, do-while, for, return, break, and a selection statement
called switch. Java does not, however, support the much-maligned goto (which can still be
the most expedient way to solve certain types of problems). You can still do a goto-like jump,
but it is much more constrained than a typical goto.

true and false

All conditional statements use the truth or falsehood of a conditional expression to determine
the execution path. An example of a conditional expression is a == b. This uses the
conditional operator == to see if the value of a is equivalent to the value of b. The expression
returns true or false. Any of the relational operators you’ve seen in the previous chapter can
be used to produce a conditional statement. Note that Java doesn’t allow you to use a number
as a boolean, even though it’s allowed in C and C++ (where truth is nonzero and falsehood
is zero). If you want to use a non-boolean in a boolean test, such as if(a), you must first
convert it to a boolean value by using a conditional expression, such as if(a != 0).

The if-else statement is the most basic way to control program flow. The else is optional, so
you can use if in two forms:

if(Boolean-expression)
statement

or

if(Boolean-expression)
statement

else
statement

The Boolean-expression must produce a boolean result. The statement is either a simple
statement terminated by a semicolon, or a compound statement, which is a group of simple
statements enclosed in braces. Whenever the word “statement” is used, it always implies that
the statement can be simple or compound.

As an example of if-else, here is a test() method that will tell you whether a guess is above,
below, or equivalent to a target number:

//: control/IfElse.java
import static net.mindview.util.Print.*;

public class IfElse {

static int result = 0;
static void test(int testval, int target) {
if(testval > target)
result = +1;
else if(testval < target)
result = -1;
else
result = 0; // Match
}
public static void main(String[] args) {
test (10, 5);
print(result);
test(5, 10);
print(result);
test(5, 5);
print(result);
}
} /* Output:
1
-1
(0]
1]/~

In the middle of test(), you'll also see an “else if,” which is not a new keyword but just an
else followed by a new if statement.

Although Java, like C and C++ before it, is a “free-form” language, it is conventional to indent
the body of a control flow statement so the reader can easily determine where it begins and
ends.

Iteration

Looping is controlled by while, do-while and for, which are sometimes classified as
iteration statements. A statement repeats until the controlling Boolean-expression evaluates
to false. The form for a while loop is:

while(Boolean-expression)
statement

The Boolean-expression is evaluated once at the beginning of the loop and again before each
further iteration of the statement.

Here’s a simple example that generates random numbers until a particular condition is met:

//: control/WhileTest.java
// Demonstrates the while loop.

public class WhileTest {

static boolean condition() {
boolean result = Math.random() < 0.99;
System.out.print(result + ", ");
return result;

}

public static void main(String[] args) {
while(condition())

System.out.println("Inside ‘while’");

System.out.println("Exited ‘while’");

}
} /* (Execute to see output) *///:~

94

Thinking in Java Bruce Eckel

The condition() method uses the static method random() in the Math library, which
generates a double value between 0 and 1. (It includes o, but not 1.) The result value comes
from the comparison operator <, which produces a boolean result. If you print a boolean
value, you automatically get the appropriate string “true” or “false.” The conditional
expression for the while says: “repeat the statements in the body as long as condition()
returns true.”

do-while
The form for do-while is

do
statement
while(Boolean-expression);

The sole difference between while and do-while is that the statement of the do-while
always executes at least once, even if the expression evaluates to false the first time. In a
while, if the conditional is false the first time the statement never executes. In practice, do-
while is less common than while.

for

A for loop is perhaps the most commonly used form of iteration. This loop performs
initialization before the first iteration. Then it performs conditional testing and, at the end of
each iteration, some form of “stepping.” The form of the for loop is:

for(initialization; Boolean-expression; step)
statement

Any of the expressions initialization, Boolean-expression or step can be empty. The
expression is tested before each iteration, and as soon as it evaluates to false, execution will
continue at the line following the for statement. At the end of each loop, the step executes.

for loops are usually used for “counting” tasks:

//: control/ListCharacters.java
// Demonstrates "for" loop by listing
// all the lowercase ASCII letters.

public class ListCharacters {
public static void main(String[] args) {
for(char ¢ = 0; c < 128; c++)
if(Character.islLowerCase(c))
System.out.println("value: " + (int)c +
" character: " + c);
}
} /* Qutput:
value: 97 character: a
value: 98 character: b
value: 99 character: c
value: 100 character:
value: 101 character:
value: 102 character:
value: 103 character:
value: 104 character:
value: 105 character:
value: 106 character:

L 30e —h D Q

Controlling Execution 95

L ox//]~

Note that the variable c is defined at the point where it is used, inside the control expression
of the for loop, rather than at the beginning of main(). The scope of c is the statement
controlled by the for.

This program also uses the java.lang.Character “wrapper” class, which not only wraps the
primitive char type in an object, but also provides other utilities. Here, the static
isLowerCase() method is used to detect whether the character in question is a lowercase
letter.

Traditional procedural languages like C require that all variables be defined at the beginning
of a block so that when the compiler creates a block, it can allocate space for those variables.
In Java and C++, you can spread your variable declarations throughout the block, defining
them at the point that you need them. This allows a more natural coding style and makes
code easier to understand.

Exercise 1: (1) Write a program that prints values from 1 to 100.

Exercise 2: (2) Write a program that generates 25 random int values. For each value,
use an if-else statement to classify it as greater than, less than, or equal to a second
randomly generated value.

Exercise 3: (1) Modify Exercise 2 so that your code is surrounded by an “infinite” while

loop. It will then run until you interrupt it from the keyboard (typically by pressing Control-
0.

Exercise 4: (3) Write a program that uses two nested for loops and the modulus
operator (%) to detect and print prime numbers (integral numbers that are not evenly
divisible by any other numbers except for themselves and 1).

Exercise 5: (4) Repeat Exercise 10 from the previous chapter, using the ternary operator
and a bitwise test to display the ones and zeroes, instead of Integer.toBinaryString().

The comma operator

Earlier in this chapter I stated that the comma operator (not the comma separator, which is
used to separate definitions and method arguments) has only one use in Java: in the control
expression of a for loop. In both the initialization and step portions of the control
expression, you can have a number of statements separated by commas, and those
statements will be evaluated sequentially.

Using the comma operator, you can define multiple variables within a for statement, but
they must be of the same type:

//: control/CommaOperator.java

public class CommaOperator {
public static void main(String[] args) {
for(int i =1, j =1 +10; i < 5; i++, j =1 * 2) {
System.out.printiln("i =" + i + " j =" + j);

11

(o
1o

c

—+

P

96 Thinking in Java Bruce Eckel

—
I
o O

The int definition in the for statement covers both i and j. The initialization portion can
have any number of definitions of one type. The ability to define variables in a control
expression is limited to the for loop. You cannot use this approach with any of the other
selection or iteration statements.

You can see that in both the initialization and step portions, the statements are evaluated in
sequential order.

Foreach syntax

Java SE5 introduces a new and more succinct for syntax, for use with arrays and containers

(you'll learn more about these in the Arrays and Containers in Depth chapter). This is often

called the foreach syntax, and it means that you don’t have to create an int to count through
a sequence of items—the foreach produces each item for you, automatically.

For example, suppose you have an array of float and you’d like to select each element in that
array:

//: control/ForEachFloat.java
import java.util.*;

public class ForEachFloat {

public static void main(String[] args) {
Random rand = new Random(47);
float f[] = new float[10];
for(int i = 0; i < 10; i++)

f[i] = rand.nextFloat();
for(float x : f)
System.out.println(x);

}

/* Output:

.72711575

.39982635

.5309454

.0534122

.16020656

.57799757

.18847865

.4170137

.51660204

.73734957

/1]~

*OOOOOOOOOO

The array is populated using the old for loop, because it must be accessed with an index. You
can see the foreach syntax in the line:

| for(float x : f) {
This defines a variable x of type float and sequentially assigns each element of f to x.

Any method that returns an array is a candidate for use with foreach. For example, the
String class has a method toCharArray() that returns an array of char, so you can easily
iterate through the characters in a string:

Controlling Execution 97

//: control/ForEachString.java

public class ForEachString {
public static void main(String[] args) {
for(char ¢ : "An African Swallow".toCharArray())

System.out.print(c + " ");
}
} /* Output:
An African Swallow
1]/~

As you'll see in the Holding Your Objects chapter, foreach will also work with any object that
is Iterable.

Many for statements involve stepping through a sequence of integral values, like this:
for(int i = 0; i < 100; i++)

For these, the foreach syntax won’t work unless you want to create an array of int first. To
simplify this task, I've created a method called range() in net.mindview.util.Range that
automatically generates the appropriate array. My intent is for range() to be used as a
static import:

//: control/ForEachInt.java
import static net.mindview.util.Range.*;
import static net.mindview.util.Print.*;

public class ForEachInt {
public static void main(String[] args) {
for(int i : range(l0)) // 0..9
printnb(i + " ");
print();
for(int i : range(5, 10)) // 5..9
printnb(i + " ");

print();
for(int i : range(5, 20, 3)) // 5..20 step 3
printnb(i + " ");
print();
}

} /* OQutput
12345672829
56789
58 11 14 17
1]/~

The range() method has been overloaded, which means the same method name can be
used with different argument lists (you'll learn about overloading soon). The first overloaded
form of range() just starts at zero and produces values up to but not including the top end
of the range. The second form starts at the first value and goes until one less than the second,
and the third form has a step value so it increases by that value. range() is a very simple
version of what’s called a generator, which you’ll see later in the book.

Note that although range() allows the use of the foreach syntax in more places, and thus
arguably increases readability, it is a little less efficient, so if you are tuning for performance
you may want to use a profiler, which is a tool that measures the performance of your code.

You’ll note the use of printnb() in addition to print(). The printnb() method does not
emit a newline, so it allows you to output a line in pieces.

98

Thinking in Java Bruce Eckel

The foreach syntax not only saves time when typing in code. More importantly, it is far easier
to read and says what you are trying to do (get each element of the array) rather than giving
the details of how you are doing it (“I'm creating this index so I can use it to select each of the
array elements.”). The foreach syntax will be used whenever possible in this book.

return

Several keywords represent unconditional branching, which simply means that the branch
happens without any test. These include return, break, continue, and a way to jump to a
labeled statement which is similar to the goto in other languages.

The return keyword has two purposes: It specifies what value a method will return (if it
doesn’t have a void return value) and it causes the current method to exit, returning that
value. The preceding test() method can be rewritten to take advantage of this:

//: control/IfElse2.java
import static net.mindview.util.Print.*;

public class IfElse2 {
static int test(int testval, int target) {
if(testval > target)
return +1;
else if(testval < target)
return -1;
else
return 0; // Match
}
public static void main(String[] args) {
print(test(10, 5));
print(test(5, 10));
print(test(5, 5));
}
} /* Output:
1
-1
0
1]/~

There’s no need for else, because the method will not continue after executing a return.

If you do not have a return statement in a method that returns void, there’s an implicit
return at the end of that method, so it’s not always necessary to include a return statement.
However, if your method states it will return anything other than void, you must ensure
every code path will return a value.

Exercise 6: (2) Modify the two test() methods in the previous two programs so that
they take two extra arguments, begin and end, and so that testval is tested to see if it is
within the range between (and including) begin and end.

break and continue

You can also control the flow of the loop inside the body of any of the iteration statements by
using break and continue. break quits the loop without executing the rest of the
statements in the loop. continue stops the execution of the current iteration and goes back
to the beginning of the loop to begin the next iteration.

Controlling Execution 99

This program shows examples of break and continue within for and while loops:

//: control/BreakAndContinue.java
// Demonstrates break and continue keywords.
import static net.mindview.util.Range.*;

public class BreakAndContinue {
public static void main(String[] args) {
for(int i = 0; i < 100; i++)
if(i == 74) break; // Out of for loop
if(i % 9 != 0) continue; // Next iteration
System.out.print(i + " ");
}
System.out.println();
// Using foreach:
for(int i : range(100)) {
if(i == 74) break; // Out of for loop
if(i % 9 != 0) continue; // Next iteration
System.out.print(i + " ");
}
System.out.println();
int i = 0;
// An "infinite loop":
while(true) {
i+t
int j =1 * 27;
if(j == 1269) break; // Out of loop
if(i % 10 !'= 0) continue; // Top of loop
System.out.print(i + " ");
}
}
} /* Qutput:
0 9 18 27 36 45 54 63 72
0 9 18 27 36 45 54 63 72
10 20 30 40
11/~

In the for loop, the value of i never gets to 100 because the break statement breaks out of
the loop when i is 74. Normally, you’d use a break like this only if you didn’t know when the
terminating condition was going to occur. The continue statement causes execution to go
back to the top of the iteration loop (thus incrementing i) whenever i is not evenly divisible
by 9. When it is, the value is printed.

The second for loop shows the use of foreach, and that it produces the same results.

Finally, you see an “infinite” while loop that would, in theory, continue forever. However,
inside the loop there is a break statement that will break out of the loop. In addition, you’ll
see that the continue statement moves control back to the top of the loop without
completing anything after that continue statement. (Thus printing happens in the second
loop only when the value of i is divisible by 10.) In the output, the value 0 is printed, because
0 % 9 produces 0.

A second form of the infinite loop is for(;;). The compiler treats both while(true) and
for(;;) in the same way, so whichever one you use is a matter of programming taste.

Exercise 7: (1) Modify Exercise 1 so that the program exits by using the break keyword
at value 99. Try using return instead.

100

Thinking in Java Bruce Eckel

The infamous “goto”

The goto keyword has been present in programming languages from the beginning. Indeed,
goto was the genesis of program control in assembly language: “If condition A, then jump
here; otherwise, jump there.” If you read the assembly code that is ultimately generated by
virtually any compiler, you’ll see that program control contains many jumps (the Java
compiler produces its own “assembly code,” but this code is run by the Java Virtual Machine
rather than directly on a hardware CPU).

A goto is a jump at the source-code level, and that’s what brought it into disrepute. If a
program will always jump from one point to another, isn’t there some way to reorganize the
code so the flow of control is not so jumpy? goto fell into true disfavor with the publication
of the famous “Goto considered harmful” paper by Edsger Dijkstra, and since then goto-
bashing has been a popular sport, with advocates of the cast-out keyword scurrying for cover.

As is typical in situations like this, the middle ground is the most fruitful. The problem is not
the use of goto, but the overuse of goto; in rare situations goto is actually the best way to
structure control flow.

Although goto is a reserved word in Java, it is not used in the language; Java has no goto.
However, it does have something that looks a bit like a jump tied in with the break and
continue keywords. It’s not a jump but rather a way to break out of an iteration statement.
The reason it’s often thrown in with discussions of goto is because it uses the same
mechanism: a label.

A label is an identifier followed by a colon, like this:
labell:

The only place a label is useful in Java is right before an iteration statement. And that means
right before—it does no good to put any other statement between the label and the iteration.
And the sole reason to put a label before an iteration is if you're going to nest another
iteration or a switch (which you’ll learn about shortly) inside it. That’s because the break
and continue keywords will normally interrupt only the current loop, but when used with a
label, they’ll interrupt the loops up to where the label exists:

labell:
outer-iteration {
inner-iteration {

//. ..

break; // (1)

//. ..

continue; // (2)

//. ..

continue labell; // (3)
//. ..

break labell; // (4)

}
}

In (1), the break breaks out of the inner iteration and you end up in the outer iteration. In
(2), the continue moves back to the beginning of the inner iteration. But in (3), the
continue labell breaks out of the inner iteration and the outer iteration, all the way back to
labell. Then it does in fact continue the iteration, but starting at the outer iteration. In (4),
the break labell also breaks all the way out to labell, but it does not reenter the iteration.
It actually does break out of both iterations.

Controlling Execution 101

Here is an example using for loops:

//: control/LabeledFor.java
// For loops with "labeled break" and "labeled continue."
import static net.mindview.util.Print.*;

public class LabeledFor {
public static void main(String[] args) {
int i = 0;
outer: // Can’t have statements here
for(; true ;) { // infinite loop
inner: // Can’t have statements here
for(; i < 10; i++) {
print("i =" + 1i);
if(i == 2) {
print("continue");
continue;
}
if(i == 3) {
print("break");
i++; // Otherwise i never
// gets incremented.
break;
}
if(i ==7) {
print("continue outer");
i++; // Otherwise i never
// gets incremented.
continue outer;
}
if(i == 8) {
print("break outer");
break outer;
}
for(int k = 0; k < 5; k++) {
if(k == 3) {
print("continue inner");
continue inner;
}
}
}
}

// Can’t break or continue to labels here

o

(@)

=

nue inner

(]

nue inner

o

o o
[T | B Y | e S | B ¢ > O { e S | e S | e S | BN
+

nue inner

—_.
~

continue outer
i=8
break outer

102 Thinking in Java Bruce Eckel

L ox//]~

Note that break breaks out of the for loop, and that the increment expression doesn’t occur
until the end of the pass through the for loop. Since break skips the increment expression,
the increment is performed directly in the case of i == 3. The continue outer statement in
the case of i == 7 also goes to the top of the loop and also skips the increment, so it too is
incremented directly.

If not for the break outer statement, there would be no way to get out of the outer loop
from within an inner loop, since break by itself can break out of only the innermost loop.
(The same is true for continue.)

Of course, in the cases where breaking out of a loop will also exit the method, you can simply
use a return.

Here is a demonstration of labeled break and continue statements with while loops:

//: control/LabeledWhile.java
// While loops with "labeled break" and "labeled continue."
import static net.mindview.util.Print.*;

public class LabeledWhile {
public static void main(String[] args) {
int i = 0;
outer:
while(true) {
print("Outer while loop");
while(true) {
i+t
print("i = " + 1i);
if(i == 1) {
print("continue");
continue;
}
if(i == 3) {
print("continue outer");
continue outer;

}
if(i ==5) {
print("break");
break;
}
if(i ==7) {
print("break outer");
break outer;
}
}
}
}
} /* Qutput:
Outer while loop
i=1
continue
i=2
i=3
continue outer
Outer while loop

i=4
i=25
break

Outer while loop

Controlling Execution 103

i=6

i=17

break outer
*/]] i~

The same rules hold true for while:

1. A plain continue goes to the top of the innermost loop and continues.

2. Alabeled continue goes to the label and reenters the loop right after that label.

3. Abreak “drops out of the bottom” of the loop.

4. Alabeled break drops out of the bottom of the end of the loop denoted by the label.

It’s important to remember that the only reason to use labels in Java is when you have nested
loops and you want to break or continue through more than one nested level.

In Dijkstra’s “Goto considered harmful” paper, what he specifically objected to was the labels,
not the goto. He observed that the number of bugs seems to increase with the number of
labels in a program, and that labels and gotos make programs difficult to analyze. Note that
Java labels don’t suffer from this problem, since they are constrained in their placement and
can’t be used to transfer control in an ad hoc manner. It’s also interesting to note that this is a
case where a language feature is made more useful by restricting the power of the statement.

switch

The switch is sometimes called a selection statement. The switch statement selects from
among pieces of code based on the value of an integral expression. Its general form is:

switch(integral-selector) {

case integral-valuel : statement; break;
case integral-value2 : statement; break;
case integral-value3 : statement; break;
case integral-valued4 : statement; break;
case integral-value5 : statement; break;
/7

default: statement;

}

Integral-selector is an expression that produces an integral value. The switch compares the
result of integral-selector to each integral-value. If it finds a match, the corresponding
statement (a single statement or multiple statements; braces are not required) executes. If no
match occurs, the default statement executes.

You will notice in the preceding definition that each case ends with a break, which causes
execution to jump to the end of the switch body. This is the conventional way to build a
switch statement, but the break is optional. If it is missing, the code for the following case
statements executes until a break is encountered. Although you don’t usually want this kind
of behavior, it can be useful to an experienced programmer. Note that the last statement,
following the default, doesn’t have a break because the execution just falls through to
where the break would have taken it anyway. You could put a break at the end of the
default statement with no harm if you considered it important for style’s sake.

The switch statement is a clean way to implement multiway selection (i.e., selecting from
among a number of different execution paths), but it requires a selector that evaluates to an
integral value, such as int or char. If you want to use, for example, a string or a floating

104 Thinking in Java Bruce Eckel

point number as a selector, it won’t work in a switch statement. For non-integral types, you
must use a series of if statements. At the end of the next chapter, you’ll see that Java SE5’s
new enum feature helps ease this restriction, as enums are designed to work nicely with
switch.

Here’s an example that creates letters randomly and determines whether they’re vowels or
consonants:

//: control/VowelsAndConsonants.java

// Demonstrates the switch statement.
import java.util.*;

import static net.mindview.util.Print.*;

public class VowelsAndConsonants {
public static void main(String[] args) {
Random rand = new Random(47);
for(int i = 0; i < 100; i++) {
int ¢ = rand.nextInt(26) + ‘a’;

printnb((char)c + ", " + c + ": ");
switch(c) {
case ‘a’:
case ‘e’ :
case ‘i’
case ‘o’
case ‘u’: print("vowel");
break;
case ‘y’
case ‘w’: print("Sometimes a vowel");
break;
default: print("consonant");
}
}
}
} /* Output:
y, 121: Sometimes a vowel
n, 110: consonant
z, 122: consonant
b, 98: consonant
r, 114: consonant
n, 110: consonant
y, 121: Sometimes a vowel
g, 103: consonant
c, 99: consonant
f, 102: consonant
o, 111: vowel
w, 119: Sometimes a vowel
z, 122: consonant
1]/~

Since Random.nextInt(26) generates a value between 0 and 26, you need only add an
offset of ‘@’ to produce the lowercase letters. The single-quoted characters in the case
statements also produce integral values that are used for comparison.

Notice how the cases can be “stacked” on top of each other to provide multiple matches for a
particular piece of code. You should also be aware that it’s essential to put the break
statement at the end of a particular case; otherwise, control will simply drop through and
continue processing on the next case.

Controlling Execution 105

In the statement:
int ¢ = rand.nextInt(26) + ‘a’;

Random.nextInt() produces a random int value from o to 25, which is added to the value
of ‘a’. This means that ‘a’ is automatically converted to an int to perform the addition.

In order to print c as a character, it must be cast to char; otherwise, you’ll produce integral
output.

EXxercise 8: (2) Create a switch statement that prints a message for each case, and put
the switch inside a for loop that tries each case. Put a break after each case and test it,
then remove the breaks and see what happens.

Exercise 9: (4) A Fibonacci sequence is the sequence of numbers 1, 1, 2, 3, 5, 8, 13, 21,
34, and so on, where each number (from the third on) is the sum of the previous two. Create
a method that takes an integer as an argument and displays that many Fibonacci numbers
starting from the beginning, e.g., If you run java Fibonacci 5 (where Fibonacci is the
name of the class) the output will be: 1, 1, 2, 3, 5.

Exercise 10: (5) A vampire number has an even number of digits and is formed by
multiplying a pair of numbers containing half the number of digits of the result. The digits
are taken from the original number in any order. Pairs of trailing zeroes are not allowed.
Examples include:

1260 = 21 * 60

1827 =21 * 87

2187 =27 * 81

Write a program that finds all the 4-digit vampire numbers. (Suggested by Dan Forhan.)

Summary

This chapter concludes the study of fundamental features that appear in most programming
languages: calculation, operator precedence, type casting, and selection and iteration. Now
you're ready to begin taking steps that move you closer to the world of object-oriented
programming. The next chapter will cover the important issues of initialization and cleanup
of objects, followed in the subsequent chapter by the essential concept of implementation
hiding.

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide,
available for sale from www.MindView.net.

106

Thinking in Java Bruce Eckel

Initialization
& Cleanup

As the computer revolution progresses, “unsafe” programming has
become one of the major culprits that makes programming expensive.

Two of these safety issues are initialization and cleanup. Many C bugs occur when the
programmer forgets to initialize a variable. This is especially true with libraries when users
don’t know how to initialize a library component, or even that they must. Cleanup is a special
problem because it’s easy to forget about an element when you're done with it, since it no
longer concerns you. Thus, the resources used by that element are retained and you can
easily end up running out of resources (most notably, memory).

C++ introduced the concept of a constructor, a special method automatically called when an
object is created. Java also adopted the constructor, and in addition has a garbage collector
that automatically releases memory resources when they’re no longer being used. This
chapter examines the issues of initialization and cleanup, and their support in Java.

Guaranteed initialization
with the constructor

You can imagine creating a method called initialize() for every class you write. The name is
a hint that it should be called before using the object. Unfortunately, this means the user
must remember to call that method. In Java, the class designer can guarantee initialization of
every object by providing a constructor. If a class has a constructor, Java automatically calls
that constructor when an object is created, before users can even get their hands on it. So
initialization is guaranteed.

The next challenge is what to name this method. There are two issues. The first is that any
name you use could clash with a name you might like to use as a member in the class. The
second is that because the compiler is responsible for calling the constructor, it must always
know which method to call. The C++ solution seems the easiest and most logical, so it’s also
used in Java: The name of the constructor is the same as the name of the class. It makes
sense that such a method will be called automatically during initialization.

Here’s a simple class with a constructor:

//: initialization/SimpleConstructor.java
// Demonstration of a simple constructor.

class Rock {
Rock() { // This is the constructor
System.out.print("Rock ");
}

}

public class SimpleConstructor {
public static void main(String[] args) {
for(int i = 0; i < 10; i++)
new Rock();

}
} /* Output:
Rock Rock Rock Rock Rock Rock Rock Rock Rock Rock
*/]] i~

Now, when an object is created:
| new Rock();

storage is allocated and the constructor is called. It is guaranteed that the object will be
properly initialized before you can get your hands on it.

Note that the coding style of making the first letter of all methods lowercase does not apply to
constructors, since the name of the constructor must match the name of the class exactly.

A constructor that takes no arguments is called the default constructor. The Java documents
typically use the term no-arg constructor, but “default constructor” has been in use for many
years before Java appeared, so I will tend to use that. But like any method, the constructor
can also have arguments to allow you to specify how an object is created. The preceding
example can easily be changed so the constructor takes an argument:

//: initialization/SimpleConstructor2.java
// Constructors can have arguments.

class Rock2 {
Rock2 (int i) {
System.out.print("Rock " + i + " ");
}
}

public class SimpleConstructor2 {

public static void main(String[] args) {

for(int i = 0; i < 8; i++)
new Rock2(i);

}
} /* Output:
Rock ® Rock 1 Rock 2 Rock 3 Rock 4 Rock 5 Rock 6 Rock 7
*[]] i~

Constructor arguments provide you with a way to provide parameters for the initialization of
an object. For example, if the class Tree has a constructor that takes a single integer
argument denoting the height of the tree, you create a Tree object like this:

Tree t = new Tree(12); // 12-foot tree

If Tree(int) is your only constructor, then the compiler won’t let you create a Tree object
any other way.

Constructors eliminate a large class of problems and make the code easier to read. In the
preceding code fragment, for example, you don’t see an explicit call to some initialize()
method that is conceptually separate from creation. In Java, creation and initialization are
unified concepts—you can’t have one without the other.

The constructor is an unusual type of method because it has no return value. This is distinctly
different from a void return value, in which the method returns nothing but you still have
the option to make it return something else. Constructors return nothing and you don’t have
an option (the new expression does return a reference to the newly created object, but the
constructor itself has no return value). If there were a return value, and if you could select
your own, the compiler would somehow need to know what to do with that return value.

108 Thinking in Java Bruce Eckel

Exercise 1: (1) Create a class containing an uninitialized String reference. Demonstrate
that this reference is initialized by Java to null.

Exercise 2: (2) Create a class with a String field that is initialized at the point of
definition, and another one that is initialized by the constructor. What is the difference
between the two approaches?

Method overloading

One of the important features in any programming language is the use of names. When you
create an object, you give a name to a region of storage. A method is a name for an action.
You refer to all objects and methods by using names. Well-chosen names create a system that
is easier for people to understand and change. It’s a lot like writing prose—the goal is to
communicate with your readers.

A problem arises when mapping the concept of nuance in human language onto a
programming language. Often, the same word expresses a number of different meanings—it’s
overloaded. This is useful, especially when it comes to trivial differences. You say, “Wash the
shirt,” “Wash the car,” and “Wash the dog.” It would be silly to be forced to say, “shirtWash
the shirt,” “carWash the car,” and “dogWash the dog” just so the listener doesn’t need to
make any distinction about the action performed. Most human languages are redundant, so
even if you miss a few words, you can still determine the meaning. You don’t need unique
identifiers—you can deduce meaning from context.

Most programming languages (C in particular) require you to have a unique identifier for
each method (often called functions in those languages). So you could not have one function
called print() for printing integers and another called print() for printing floats—each
function requires a unique name.

In Java (and C++), another factor forces the overloading of method names: the constructor.
Because the constructor’s name is predetermined by the name of the class, there can be only
one constructor name. But what if you want to create an object in more than one way? For
example, suppose you build a class that can initialize itself in a standard way or by reading
information from a file. You need two constructors, the default constructor and one that
takes a String as an argument, which is the name of the file from which to initialize the
object. Both are constructors, so they must have the same name—the name of the class. Thus,
method overloading is essential to allow the same method name to be used with different
argument types. And although method overloading is a must for constructors, it’s a general
convenience and can be used with any method.

Here’s an example that shows both overloaded constructors and overloaded methods:

//: initialization/Overloading.java

// Demonstration of both constructor

// and ordinary method overloading.
import static net.mindview.util.Print.*;

class Tree {

int height;

Tree() {
print("Planting a seedling");
height = 0;

}

Tree(int initialHeight) {
height = initialHeight;
print("Creating new Tree that is " +

height + " feet tall");

Initialization & Cleanup 109

}
void info() {
print("Tree is " + height + " feet tall");
}
void info(String s) {
print(s + ": Tree is " + height + " feet tall");
}
}

public class Overloading {
public static void main(String[] args) {
for(int i = 0; i < 5; i++) {
Tree t = new Tree(i);
t.info();
t.info("overloaded method") ;
}
// Overloaded constructor:
new Tree();
}
} /* OQutput:
Creating new Tree that is 0 feet tall
Tree is 0 feet tall
overloaded method: Tree is 0 feet tall
Creating new Tree that is 1 feet tall
Tree is 1 feet tall
overloaded method: Tree is 1 feet tall
Creating new Tree that is 2 feet tall
Tree is 2 feet tall
overloaded method: Tree is 2 feet tall
Creating new Tree that is 3 feet tall
Tree is 3 feet tall
overloaded method: Tree is 3 feet tall
Creating new Tree that is 4 feet tall
Tree is 4 feet tall
overloaded method: Tree is 4 feet tall
Planting a seedling
¥1/] i~

A Tree object can be created either as a seedling, with no argument, or as a plant grown in a
nursery, with an existing height. To support this, there is a default constructor, and one that
takes the existing height.

You might also want to call the info() method in more than one way. For example, if you
have an extra message you want printed, you can use info(String), and info() if you have
nothing more to say. It would seem strange to give two separate names to what is obviously
the same concept. Fortunately, method overloading allows you to use the same name for
both.

Distinguishing overloaded methods

If the methods have the same name, how can Java know which method you mean? There’s a
simple rule: Each overloaded method must take a unique list of argument types.

If you think about this for a second, it makes sense. How else could a programmer tell the
difference between two methods that have the same name, other than by the types of their
arguments?

Even differences in the ordering of arguments are sufficient to distinguish two methods,
although you don’t normally want to take this approach because it produces difficult-to-
maintain code:

110 Thinking in Java Bruce Eckel

//: initialization/OverloadingOrder.java
// Overloading based on the order of the arguments.
import static net.mindview.util.Print.*;

public class OverloadingOrder {
static void f(String s, int i) {

print("String: " + s + ", dint: " + 1);
}
static void f(int i, String s) {
print("int: " + i + ", String: " + s);
}

public static void main(String[] args) {
f("String first", 11);
(99, "Int first");
}
} /* Qutput:
String: String first, int: 11
int: 99, String: Int first
1]/~

The two f() methods have identical arguments, but the order is different, and that’s what
makes them distinct.

Overloading with primitives

A primitive can be automatically promoted from a smaller type to a larger one, and this can
be slightly confusing in combination with overloading. The following example demonstrates
what happens when a primitive is handed to an overloaded method:

//: initialization/PrimitiveOverloading.java
// Promotion of primitives and overloading.
import static net.mindview.util.Print.*;

public class PrimitiveOverloading ({
void fl(char x) { printnb("fl(char) "); }
void fl(byte x) { printnb("fl(byte) "); }
void fl(short x) { printnb("fl(short) "); }
void fl(int x) { printnb("fl(int) "); }
void fl(long x) { printnb("fl(long) "); }
void fl(float x) { printnb("fl(float) "); }
void fl(double x) { printnb("fl(double) "); }

void f2(byte x) { printnb("f2(byte) "); }
void f2(short x) { printnb("f2(short) "); }
void f2(int x) { printnb("f2(int) "); }

void f2(long x) { printnb("f2(long) "); }
void f2(float x) { printnb("f2(float) "); }
void f2(double x) { printnb("f2(double) "); }

void f3(short x) { printnb("f3(short) "); }
void f3(int x) { printnb("f3(int) "); }

void f3(long x) { printnb("f3(long) "); }
void f3(float x) { printnb("f3(float) "); }
void f3(double x) { printnb("f3(double) "); }

void f4(int x) { printnb("f4(int) "); }

void f4(long x) { printnb("f4(long) "); }
void f4(float x) { printnb("f4(float) "); }
void f4(double x) { printnb("f4(double) "); }

void f5(long x) { printnb("f5(long) "); }

Initialization & Cleanup 111

void f5(float x) { printnb("f5(float) "); }
void f5(double x) { printnb("f5(double) ");

void f6(float x) { printnb("f6(float) "); }
void f6(double x) { printnb("f6(double) ");

void f7(double x) { printnb("f7(double) ");

void testConstVal() {
printnb("5: ");
F1(5);F2(5);f3(5);f4(5);f5(5);f6(5);f7(5);
}
void testChar () {
char x = ‘x’;
printnb("char: ");
FL(x);T2(x) ;T3 (x);T4(x);T5(x);T6(x);T7(x);
}
void testByte() {
byte x = 0;
printnb("byte: ");
FL(x);T2(x);T3(x);T4(x);T5(x);f6(x);T7(x);
}
void testShort() {
short x = 0;
printnb("short: ");
FL(x);F2(x) ;3 (x);F4(x);f5(x);f6(x);f7(x);
}
void testInt() {
int x = 0;
printnb("int: ");
FL(x);T2(x);T3(x);T4(x);T5(x);f6(x);T7(x);
}
void testLong() {
long x = 0;
printnb("long: ");
FL(x);T2(x);T3(x);T4(x);T5(x);f6(x);T7(x);
}
void testFloat() {
float x = 0;
printnb("float: ");
FL(x);T2(x);F3(x);T4(x);T5(x);T6(x);f7(x);
}
void testDouble() {
double x = 0;
printnb("double: ");
FL(x);T2(x);T3(x);T4(x);T5(x);f6(x);T7(x);
}
public static void main(String[] args) {
PrimitiveOverloading p =
new PrimitiveOverloading();
.testConstVal();
.testChar () ;
.testByte();
.testShort();
.testInt();
.testLong();
.testFloat();
.testDouble();

T T T T T T TTO

}
} /* OQutput:

}

}
}

print();

print();

print();

print();

print();

print();

print();

print();

5: fl(int) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double)
char: fl(char) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double)
byte: fl(byte) f2(byte) f3(short) f4(int) f5(long) f6(float) f7(double)

112

Thinking in Java

Bruce Eckel

short: fl(short) f2(short) f3(short) f4(int) f5(long) f6(float)

f7 (double)

int: fl(int) f2(int) f3(int) f4(int) f5(long) f6(float) f7(double)
long: fl(long) f2(long) f3(long) f4(long) f5(long) f6(float) f7(double)
float: fl(float) f2(float) f3(float) f4(float) f5(float) f6(float)

f7 (double)

double: fl(double) f2(double) f3(double) f4(double) f5(double)
f6(double) f7(double)

11/~

You can see that the constant value 5 is treated as an int, so if an overloaded method is
available that takes an int, it is used. In all other cases, if you have a data type that is smaller
than the argument in the method, that data type is promoted. char produces a slightly
different effect, since if it doesn’t find an exact char match, it is promoted to int.

What happens if your argument is bigger than the argument expected by the overloaded
method? A modification of the preceding program gives the answer:

//: initialization/Demotion.java
// Demotion of primitives and overloading.
import static net.mindview.util.Print.*;

public class Demotion {
void fl(char x) { print("fl(char)"); }
void fl(byte x) { print("fl(byte)"); }
void fl(short x) { print("fl(short)"); }
void fl(int x) { print("fl(int)"); }
void fl(long x) { print("fl(long)"); }
void fl(float x) { print("fl(float)"); }
void fl(double x) { print("fl(double)"); }

void f2(char x) { print("f2(char)"); }
void f2(byte x) { print("f2(byte)"); }
void f2(short x) { print("f2(short)"); }
void f2(int x) { print("f2(int)"); }
void f2(long x) { print("f2(long)"); }
void f2(float x) { print("f2(float)"); }

void f3(char x) { print("f3(char)"); }
void f3(byte x) { print("f3(byte)"); }
void f3(short x) { print("f3(short)"); }
void f3(int x) { print("f3(int)"); }
void f3(long x) { print("f3(long)"); }

void fd4(char x) { print("fd4(char)"); }
void fd4(byte x) { print("f4(byte)"); }
void f4(short x) { print("fd4(short)"); }
void f4(int x) { print("f4(int)"); }

void f5(char x) { print("f5(char)"); }
void f5(byte x) { print("f5(byte)"); }
void f5(short x) { print("f5(short)"); }

void f6(char x) { print("f6(char)"); }
void fe(byte x) { print("fe(byte)"); }

void f7(char x) { print("f7(char)"); }

void testDouble() {
double x = 0;
print("double argument:");
fl1(x);f2((float)x);f3((long)x);f4((int)x);

Initialization & Cleanup 113

f5((short)x);f6((byte)x);f7((char)x);
}
public static void main(String[] args) {
Demotion p = new Demotion();
p.testDouble();

}
} /* Qutput:
double argument:
fl(double)
f2(float)
f3(long)
f4(int)
f5(short)
f6(byte)
f7(char)
1]/~

Here, the methods take narrower primitive values. If your argument is wider, then you must
perform a narrowing conversion with a cast. If you don’t do this, the compiler will issue an
error message.

Overloading on return values

It is common to wonder, “Why only class names and method argument lists? Why not
distinguish between methods based on their return values?” For example, these two
methods, which have the same name and arguments, are easily distinguished from each
other:

void () {}
int f() { return 1; }

This might work fine as long as the compiler could unequivocally determine the meaning
from the context, as in int x = f('). However, you can also call a method and ignore the
return value. This is often referred to as calling a method for its side effect, since you don’t
care about the return value, but instead want the other effects of the method call. So if you
call the method this way:

fO;
how can Java determine which f() should be called? And how could someone reading the

code see it? Because of this sort of problem, you cannot use return value types to distinguish
overloaded methods.

Default constructors

As mentioned previously, a default constructor (a.k.a. a “no-arg” constructor) is one without
arguments that is used to create a “default object.” If you create a class that has no
constructors, the compiler will automatically create a default constructor for you. For
example:

//: initialization/DefaultConstructor.java
class Bird {}
public class DefaultConstructor {

public static void main(String[] args) {
Bird b = new Bird(); // Default!

114

Thinking in Java Bruce Eckel

}
Y/~

The expression
| new Bird()

creates a new object and calls the default constructor, even though one was not explicitly
defined. Without it, you would have no method to call to build the object. However, if you
define any constructors (with or without arguments), the compiler will not synthesize one for
you:

//: initialization/NoSynthesis.java

class Bird2 {
Bird2(int i) {}
Bird2 (double d) {}
}

public class NoSynthesis {
public static void main(String[] args) {
//' Bird2 b = new Bird2(); // No default

Bird2 b2 = new Bird2(1);
Bird2 b3 = new Bird2(1.0);
}
Yy /)~
If you say:

| new Bird2()

the compiler will complain that it cannot find a constructor that matches. When you don’t
put in any constructors, it’s as if the compiler says, “You are bound to need some constructor,
so let me make one for you.” But if you write a constructor, the compiler says, “You’ve written
a constructor so you know what you’re doing; if you didn’t put in a default it’s because you
meant to leave it out.”

Exercise 3: (1) Create a class with a default constructor (one that takes no arguments)
that prints a message. Create an object of this class.

Exercise 4: (1) Add an overloaded constructor to the previous exercise that takes a
String argument and prints it along with your message.

Exercise 5: (2) Create a class called Dog with an overloaded bark() method. This
method should be overloaded based on various primitive data types, and print different types
of barking, howling, etc., depending on which overloaded version is called. Write a main()
that calls all the different versions.

Exercise 6: (1) Modify the previous exercise so that two of the overloaded methods have
two arguments (of two different types), but in reversed order relative to each other. Verify
that this works.

Exercise 7: (1) Create a class without a constructor, and then create an object of that
class in main() to verify that the default constructor is automatically synthesized.

Initialization & Cleanup 115

The this keyword

If you have two objects of the same type called a and b, you might wonder how it is that you
can call a method peel() for both those objects:

//: initialization/BananaPeel.java
class Banana { void peel(int i) { /* ... */ } }

public class BananaPeel {
public static void main(String[] args) {
Banana a = new Banana(),
b = new Banana();
a.peel(1l);
b.peel(2);
}
Yy /1]~

If there’s only one method called peel(), how can that method know whether it’s being
called for the object a or b?

To allow you to write the code in a convenient object-oriented syntax in which you “send a
message to an object,” the compiler does some undercover work for you. There’s a secret first
argument passed to the method peel(), and that argument is the reference to the object
that’s being manipulated. So the two method calls become something like:

Banana.peel(a, 1);
Banana.peel(b, 2);

This is internal and you can’t write these expressions and get the compiler to accept them,
but it gives you an idea of what’s happening.

Suppose you're inside a method and you’d like to get the reference to the current object.
Since that reference is passed secretly by the compiler, there’s no identifier for it. However,
for this purpose there’s a keyword: this. The this keyword—which can be used only inside a
non-static method—produces the reference to the object that the method has been called
for. You can treat the reference just like any other object reference. Keep in mind that if
you're calling a method of your class from within another method of your class, you don’t
need to use this. You simply call the method. The current this reference is automatically
used for the other method. Thus you can say:

//: initialization/Apricot.java
public class Apricot {

void pick() { /7* ... */ }
void pit() { pick(); /* ... */ }
Yy /i~

Inside pit(), you could say this.pick() but there’s no need to.* The compiler does it for you
automatically. The this keyword is used only for those special cases in which you need to
explicitly use the reference to the current object. For example, it’s often used in return
statements when you want to return the reference to the current object:

1 Some people will obsessively put this in front of every method call and field reference, arguing that it makes it “clearer
and more explicit.” Don’t do it. There’s a reason that we use high-level languages: They do things for us. If you put this in
when it’s not necessary, you will confuse and annoy everyone who reads your code, since all the rest of the code they’ve
read won't use this everywhere. People expect this to be used only when it is necessary. Following a consistent and
straightforward coding style saves time and money.

116

Thinking in Java Bruce Eckel

//: initialization/Leaf.java
// Simple use of the "this" keyword.

public class Leaf {

int i =0;

Leaf increment() {
i+t
return this;

}

void print() {
System.out.printin("i = " + 1i);

}

public static void main(String[] args) {
Leaf x = new Leaf();
x.increment().increment().increment().print();

}
/* Output:
/

Because increment() returns the reference to the current object via the this keyword,
multiple operations can easily be performed on the same object.

The this keyword is also useful for passing the current object to another method:

//: initialization/PassingThis.java

class Person {
public void eat(Apple apple) {
Apple peeled = apple.getPeeled();
System.out.println("Yummy") ;
}
}

class Peeler {
static Apple peel(Apple apple) {
// ... remove peel
return apple; // Peeled
}
}

class Apple {
Apple getPeeled() { return Peeler.peel(this); }

}

public class PassingThis {
public static void main(String[] args) {
new Person().eat(new Apple());

}
} /* Output:
Yummy
1]/~

Apple needs to call Peeler.peel(), which is a foreign utility method that performs an
operation that, for some reason, needs to be external to Apple (perhaps the external method
can be applied across many different classes, and you don’t want to repeat the code). To pass
itself to the foreign method, it must use this.

Exercise 8: (1) Create a class with two methods. Within the first method, call the second
method twice: the first time without using this, and the second time using this—just to see it
working; you should not use this form in practice.

Initialization & Cleanup 117

Calling constructors from constructors

When you write several constructors for a class, there are times when you’d like to call one
constructor from another to avoid duplicating code. You can make such a call by using the
this keyword.

Normally, when you say this, it is in the sense of “this object” or “the current object,” and by
itself it produces the reference to the current object. In a constructor, the this keyword takes
on a different meaning when you give it an argument list. It makes an explicit call to the
constructor that matches that argument list. Thus you have a straightforward way to call
other constructors:

//: initialization/Flower.java
// Calling constructors with "this"
import static net.mindview.util.Print.*;

public class Flower {
int petalCount = 0;
String s = "initial value";
Flower (int petals) {
petalCount = petals;
print("Constructor w/ int arg only, petalCount= "
+ petalCount);
}
Flower (String ss) {
print("Constructor w/ String arg only, s = " + ss);
S = sS;
}
Flower (String s, int petals) {
this(petals);
/7] this(s); // Can’t call two!
this.s = s; // Another use of "this"
print("String & int args");

}
Flower () {

this("hi", 47);

print("default constructor (no args)");
}

void printPetalCount() {
//!' this(1l1l); // Not inside non-constructor!
print("petalCount = " + petalCount + " s = "+ s);
}

public static void main(String[] args) {
Flower x = new Flower();
x.printPetalCount();
}
} /* OQutput:
Constructor w/ int arg only, petalCount= 47
String & int args
default constructor (no args)
petalCount = 47 s = hi
11/~

The constructor Flower(String s, int petals) shows that, while you can call one
constructor using this, you cannot call two. In addition, the constructor call must be the first
thing you do, or you’ll get a compiler error message.

This example also shows another way you’ll see this used. Since the name of the argument s
and the name of the member data s are the same, there’s an ambiguity. You can resolve it

118

Thinking in Java Bruce Eckel

using this.s, to say that you're referring to the member data. You'll often see this form used
in Java code, and it’s used in numerous places in this book.

In printPetalCount() you can see that the compiler won’t let you call a constructor from
inside any method other than a constructor.

Exercise 9: (1) Create a class with two (overloaded) constructors. Using this, call the
second constructor inside the first one.

The meaning of static

With the this keyword in mind, you can more fully understand what it means to make a
method static. It means that there is no this for that particular method. You cannot call
non-static methods from inside static methods? (although the reverse is possible), and you
can call a static method for the class itself, without any object. In fact, that’s primarily what
a static method is for. It’s as if you're creating the equivalent of a global method. However,
global methods are not permitted in Java, and putting the static method inside a class allows
it access to other static methods and to static fields.

Some people argue that static methods are not object-oriented, since they do have the
semantics of a global method; with a static method, you don’t send a message to an object,
since there’s no this. This is probably a fair argument, and if you find yourself using a lot of
static methods, you should probably rethink your strategy. However, statics are pragmatic,
and there are times when you genuinely need them, so whether or not they are “proper OOP”
should be left to the theoreticians.

Cleanup: finalization and
garbage collection

Programmers know about the importance of initialization, but often forget the importance of
cleanup. After all, who needs to clean up an int? But with libraries, simply “letting go” of an
object once you're done with it is not always safe. Of course, Java has the garbage collector to
reclaim the memory of objects that are no longer used. Now consider an unusual case:
Suppose your object allocates “special” memory without using new. The garbage collector
only knows how to release memory allocated with new, so it won’t know how to release the
object’s “special” memory. To handle this case, Java provides a method called finalize()
that you can define for your class. Here’s how it’s supposed to work. When the garbage
collector is ready to release the storage used for your object, it will first call finalize(), and
only on the next garbage-collection pass will it reclaim the object’s memory. So if you choose
to use finalize(), it gives you the ability to perform some important cleanup at the time of
garbage collection.

This is a potential programming pitfall because some programmers, especially C++
programmers, might initially mistake finalize() for the destructor in C++, which is a
function that is always called when an object is destroyed. It is important to distinguish
between C++ and Java here, because in C++, objects always get destroyed (in a bug-free
program), whereas in Java, objects do not always get garbage collected. Or, put another way:

1. Your objects might not get garbage collected.

2 The one case in which this is possible occurs if you pass a reference to an object into the static method (the static
method could also create its own object). Then, via the reference (which is now effectively this), you can call non-static
methods and access non-static fields. But typically, if you want to do something like this, you'll just make an ordinary,
non-static method.

Initialization & Cleanup 119

2. Garbage collection is not destruction.

If you remember this, you will stay out of trouble. What it means is that if there is some
activity that must be performed before you no longer need an object, you must perform that
activity yourself. Java has no destructor or similar concept, so you must create an ordinary
method to perform this cleanup. For example, suppose that in the process of creating your
object, it draws itself on the screen. If you don’t explicitly erase its image from the screen, it
might never get cleaned up. If you put some kind of erasing functionality inside finalize(),
then if an object is garbage collected and finalize() is called (and there’s no guarantee this
will happen), then the image will first be removed from the screen, but if it isn’t, the image
will remain.

You might find that the storage for an object never gets released because your program never
nears the point of running out of storage. If your program completes and the garbage
collector never gets around to releasing the storage for any of your objects, that storage will
be returned to the operating system en masse as the program exits. This is a good thing,
because garbage collection has some overhead, and if you never do it, you never incur that
expense.

What is finalize() for?

So, if you should not use finalize() as a general-purpose cleanup method, what good is it?

A third point to remember is:

3. Garbage collection is only about memory.

That is, the sole reason for the existence of the garbage collector is to recover memory that
your program is no longer using. So any activity that is associated with garbage collection,
most notably your finalize() method, must also be only about memory and its deallocation.

Does this mean that if your object contains other objects, finalize() should explicitly release
those objects? Well, no—the garbage collector takes care of the release of all object memory
regardless of how the object is created. It turns out that the need for finalize() is limited to
special cases in which your object can allocate storage in some way other than creating an
object. But, you might observe, everything in Java is an object, so how can this be?

It would seem that finalize() is in place because of the possibility that you'll do something
Clike by allocating memory using a mechanism other than the normal one in Java. This can
happen primarily through native methods, which are a way to call non-Java code from Java.
(Native methods are covered in Appendix B in the electronic 2" edition of this book,
available at www.MindView.net.) C and C++ are the only languages currently supported by
native methods, but since they can call subprograms in other languages, you can effectively
call anything. Inside the non-Java code, C’s malloc() family of functions might be called to
allocate storage, and unless you call free(), that storage will not be released, causing a
memory leak. Of course, free() is a C and C++ function, so you’d need to call it in a native
method inside your finalize().

After reading this, you probably get the idea that you won’t use finalize() much.3 You're
correct; it is not the appropriate place for normal cleanup to occur. So where should normal
cleanup be performed?

3 Joshua Bloch goes further in his section titled “avoid finalizers”: “Finalizers are unpredictable, often dangerous, and
generally unnecessary.” Effective JavaTM Programming Language Guide, p. 20 (Addison-Wesley, 2001).

120 Thinking in Java Bruce Eckel

You must perform cleanup

To clean up an object, the user of that object must call a cleanup method at the point the
cleanup is desired. This sounds pretty straightforward, but it collides a bit with the C++
concept of the destructor. In C++, all objects are destroyed. Or rather, all objects should be
destroyed. If the C++ object is created as a local (i.e., on the stack—not possible in Java),
then the destruction happens at the closing curly brace of the scope in which the object was
created. If the object was created using new (like in Java), the destructor is called when the
programmer calls the C++ operator delete (which doesn’t exist in Java). If the C++
programmer forgets to call delete, the destructor is never called, and you have a memory
leak, plus the other parts of the object never get cleaned up. This kind of bug can be very
difficult to track down, and is one of the compelling reasons to move from C++ to Java.

In contrast, Java doesn’t allow you to create local objects—you must always use new. But in
Java, there’s no “delete” for releasing the object, because the garbage collector releases the
storage for you. So from a simplistic standpoint, you could say that because of garbage
collection, Java has no destructor. You'll see as this book progresses, however, that the
presence of a garbage collector does not remove the need for or the utility of destructors.
(And you should never call finalize() directly, so that’s not a solution.) If you want some
kind of cleanup performed other than storage release, you must still explicitly call an
appropriate method in Java, which is the equivalent of a C++ destructor without the
convenience.

Remember that neither garbage collection nor finalization is guaranteed. If the JVM isn’t
close to running out of memory, then it might not waste time recovering memory through
garbage collection.

The termination condition

In general, you can’t rely on finalize() being called, and you must create separate “cleanup”
methods and call them explicitly. So it appears that finalize() is only useful for obscure
memory cleanup that most programmers will never use. However, there is an interesting use
of finalize() that does not rely on it being called every time. This is the verification of the
termination condition* of an object.

At the point that you're no longer interested in an object—when it’s ready to be cleaned up—
that object should be in a state whereby its memory can be safely released. For example, if
the object represents an open file, that file should be closed by the programmer before the
object is garbage collected. If any portions of the object are not properly cleaned up, then you
have a bug in your program that can be very difficult to find. finalize() can be used to
eventually discover this condition, even if it isn’t always called. If one of the finalizations
happens to reveal the bug, then you discover the problem, which is all you really care about.

Here’s a simple example of how you might use it:

//: initialization/TerminationCondition.java
// Using finalize() to detect an object that
// hasn’t been properly cleaned up.

class Book {
boolean checkedOut = false;
Book (boolean checkOut) {
checkedOut = checkOut;

}

4 A term coined by Bill Venners (www.Artima.com) during a seminar that he and I were giving together.

Initialization & Cleanup 121

void checkIn() {
checkedOut = false;

}
protected void finalize() {
if (checkedOut)
System.out.println("Error: checked out");
// Normally, you’ll also do this:
// super.finalize(); // Call the base-class version
}

}

public class TerminationCondition {
public static void main(String[] args) {
Book novel = new Book(true);
// Proper cleanup:
novel.checkIn();
// Drop the reference, forget to clean up:
new Book(true);
// Force garbage collection & finalization:
System.gc();
}
} /* Qutput:
Error: checked out
/1]~

The termination condition is that all Book objects are supposed to be checked in before they
are garbage collected, but in main(), a programmer error doesn’t check in one of the books.
Without finalize() to verify the termination condition, this can be a difficult bug to find.

Note that System.gc() is used to force finalization. But even if it isn’t, it’s highly probable
that the errant Book will eventually be discovered through repeated executions of the
program (assuming the program allocates enough storage to cause the garbage collector to
execute).

You should generally assume that the base-class version of finalize(') will also be doing
something important, and call it using super, as you can see in Book.finalize(). In this
case, it is commented out because it requires exception handling, which we haven’t covered
yet.

Exercise 10: (2) Create a class with a finalize() method that prints a message. In
main(), create an object of your class. Explain the behavior of your program.

Exercise 11: (4) Modify the previous exercise so that your finalize() will always be
called.

Exercise 12: (4) Create a class called Tank that can be filled and emptied, and has a
termination condition that it must be empty when the object is cleaned up. Write a
finalize () that verifies this termination condition. In main(), test the possible scenarios
that can occur when your Tank is used.

How a garbage collector works

If you come from a programming language where allocating objects on the heap is expensive,
you may naturally assume that Java’s scheme of allocating everything (except primitives) on
the heap is also expensive. However, it turns out that the garbage collector can have a
significant impact on increasing the speed of object creation. This might sound a bit odd at
first—that storage release affects storage allocation—but it’s the way some JVMs work, and it

122

Thinking in Java Bruce Eckel

means that allocating storage for heap objects in Java can be nearly as fast as creating storage
on the stack in other languages.

For example, you can think of the C++ heap as a yard where each object stakes out its own
piece of turf. This real estate can become abandoned sometime later and must be reused. In
some JVMs, the Java heap is quite different; it’s more like a conveyor belt that moves
forward every time you allocate a new object. This means that object storage allocation is
remarkably rapid. The “heap pointer” is simply moved forward into virgin territory, so it’s
effectively the same as C++’s stack allocation. (Of course, there’s a little extra overhead for
bookkeeping, but it’s nothing like searching for storage.)

You might observe that the heap isn’t in fact a conveyor belt, and if you treat it that way,
you’ll start paging memory—moving it on and off disk, so that you can appear to have more
memory than you actually do. Paging significantly impacts performance. Eventually, after
you create enough objects, you’ll run out of memory. The trick is that the garbage collector
steps in, and while it collects the garbage it compacts all the objects in the heap so that you've
effectively moved the “heap pointer” closer to the beginning of the conveyor belt and farther
away from a page fault. The garbage collector rearranges things and makes it possible for the
high-speed, infinite-free-heap model to be used while allocating storage.

To understand garbage collection in Java, it’s helpful learn how garbage-collection schemes
work in other systems. A simple but slow garbage-collection technique is called reference
counting. This means that each object contains a reference counter, and every time a
reference is attached to that object, the reference count is increased. Every time a reference
goes out of scope or is set to null, the reference count is decreased. Thus, managing
reference counts is a small but constant overhead that happens throughout the lifetime of
your program. The garbage collector moves through the entire list of objects, and when it
finds one with a reference count of zero it releases that storage (however, reference counting
schemes often release an object as soon as the count goes to zero). The one drawback is that
if objects circularly refer to each other they can have nonzero reference counts while still
being garbage. Locating such self-referential groups requires significant extra work for the
garbage collector. Reference counting is commonly used to explain one kind of garbage
collection, but it doesn’t seem to be used in any JVM implementations.

In faster schemes, garbage collection is not based on reference counting. Instead, it is based
on the idea that any non-dead object must ultimately be traceable back to a reference that
lives either on the stack or in static storage. The chain might go through several layers of
objects. Thus, if you start in the stack and in the static storage area and walk through all the
references, you’ll find all the live objects. For each reference that you find, you must trace
into the object that it points to and then follow all the references in that object, tracing into
the objects they point to, etc., until you’ve moved through the entire Web that originated with
the reference on the stack or in static storage. Each object that you move through must still
be alive. Note that there is no problem with detached self-referential groups—these are
simply not found, and are therefore automatically garbage.

In the approach described here, the JVM uses an adaptive garbage-collection scheme, and
what it does with the live objects that it locates depends on the variant currently being used.
One of these variants is stop-and-copy. This means that—for reasons that will become
apparent—the program is first stopped (this is not a background collection scheme). Then,
each live object is copied from one heap to another, leaving behind all the garbage. In
addition, as the objects are copied into the new heap, they are packed end-to-end, thus
compacting the new heap (and allowing new storage to simply be reeled off the end as
previously described).

Of course, when an object is moved from one place to another, all references that point at the
object must be changed. The reference that goes from the heap or the static storage area to
the object can be changed right away, but there can be other references pointing to this object

Initialization & Cleanup 123

that will be encountered later during the “walk.” These are fixed up as they are found (you
could imagine a table that maps old addresses to new ones).

There are two issues that make these so-called “copy collectors” inefficient. The first is the
idea that you have two heaps and you slosh all the memory back and forth between these two
separate heaps, maintaining twice as much memory as you actually need. Some JVMs deal
with this by allocating the heap in chunks as needed and simply copying from one chunk to
another.

The second issue is the copying process itself. Once your program becomes stable, it might be
generating little or no garbage. Despite that, a copy collector will still copy all the memory
from one place to another, which is wasteful. To prevent this, some JVMs detect that no new
garbage is being generated and switch to a different scheme (this is the “adaptive” part). This
other scheme is called mark-and-sweep, and it’s what earlier versions of Sun’s JVM used all
the time. For general use, mark-and-sweep is fairly slow, but when you know you’re
generating little or no garbage, it’s fast.

Mark-and-sweep follows the same logic of starting from the stack and static storage, and
tracing through all the references to find live objects. However, each time it finds a live
object, that object is marked by setting a flag in it, but the object isn’t collected yet. Only
when the marking process is finished does the sweep occur. During the sweep, the dead
objects are released. However, no copying happens, so if the collector chooses to compact a
fragmented heap, it does so by shuffling objects around.

“Stop-and-copy” refers to the idea that this type of garbage collection is not done in the
background; instead, the program is stopped while the garbage collection occurs. In the Sun
literature you’ll find many references to garbage collection as a low-priority background
process, but it turns out that the garbage collection was not implemented that way in earlier
versions of the Sun JVM. Instead, the Sun garbage collector stopped the program when
memory got low. Mark-and-sweep also requires that the program be stopped.

As previously mentioned, in the JVM described here memory is allocated in big blocks. If you
allocate a large object, it gets its own block. Strict stop-and-copy requires copying every live
object from the source heap to a new heap before you can free the old one, which translates
to lots of memory. With blocks, the garbage collection can typically copy objects to dead
blocks as it collects. Each block has a generation count to keep track of whether it’s alive. In
the normal case, only the blocks created since the last garbage collection are compacted; all
other blocks get their generation count bumped if they have been referenced from
somewhere. This handles the normal case of lots of short-lived temporary objects.
Periodically, a full sweep is made—large objects are still not copied (they just get their
generation count bumped), and blocks containing small objects are copied and compacted.
The JVM monitors the efficiency of garbage collection and if it becomes a waste of time
because all objects are long-lived, then it switches to mark-andsweep. Similarly, the JVM
keeps track of how successful mark-and-sweep is, and if the heap starts to become
fragmented, it switches back to stop-and-copy. This is where the “adaptive” part comes in, so
you end up with a mouthful: “Adaptive generational stop-and-copy mark-andsweep.”

There are a number of additional speedups possible in a JVM. An especially important one
involves the operation of the loader and what is called a just-in-time (JIT) compiler. A JIT
compiler partially or fully converts a program into native machine code so that it doesn’t
need to be interpreted by the JVM and thus runs much faster. When a class must be loaded
(typically, the first time you want to create an object of that class), the .class file is located,
and the bytecodes for that class are brought into memory. At this point, one approach is to
simply JIT compile all the code, but this has two drawbacks: It takes a little more time,
which, compounded throughout the life of the program, can add up; and it increases the size
of the executable (bytecodes are significantly more compact than expanded JIT code), and
this might cause paging, which definitely slows down a program. An alternative approach is
lazy evaluation, which means that the code is not JIT compiled until necessary. Thus, code

124

Thinking in Java Bruce Eckel

that never gets executed might never be JIT compiled. The Java HotSpot technologies in
recent JDKs take a similar approach by increasingly optimizing a piece of code each time it is
executed, so the more the code is executed, the faster it gets.

Member initialization

Java goes out of its way to guarantee that variables are properly initialized before they are
used. In the case of a method’s local variables, this guarantee comes in the form of a compile-
time error. So if you say:

void f() {
int i;
i++; // Error -- i not initialized

}

you’ll get an error message that says that i might not have been initialized. Of course, the
compiler could have given i a default value, but an uninitialized local variable is probably a
programmer error, and a default value would have covered that up. Forcing the programmer
to provide an initialization value is more likely to catch a bug.

If a primitive is a field in a class, however, things are a bit different. As you saw in the
Everything Is an Object chapter, each primitive field of a class is guaranteed to get an initial
value. Here’s a program that verifies this, and shows the values:

//: initialization/InitialValues.java
// Shows default initial values.
import static net.mindview.util.Print.*;

public class InitialValues {
boolean t;
char c;
byte b;
short s;
int 1i;
long 1;
float f;
double d;
InitialValues reference;
void printInitialValues() {

print("Data type Initial value");
print("boolean "+ t);
print("char [" +c+ "]1");
print("byte "+ b);
print("short "+ s5);
print("int "t i)
print("long "+ 1)
print("float "+ f);
print("double "+ d);
print("reference " + reference);

}
public static void main(String[] args) {
InitialValues iv = new InitialValues();
iv.printInitialValues();
/* You could also say:
new InitialValues().printInitialValues();
*/
}
} /* Qutput:
Data type Initial value

Initialization & Cleanup 125

boolean false
char []
byte
short

int

long
float
double
reference
X1]/] i~

ENoNoNoNoNoNO]

You can see that even though the values are not specified, they automatically get initialized
(the char value is a zero, which prints as a space). So at least there’s no threat of working
with uninitialized variables.

When you define an object reference inside a class without initializing it to a new object, that
reference is given a special value of null.

Specifying initialization

What happens if you want to give a variable an initial value? One direct way to do this is
simply to assign the value at the point you define the variable in the class. (Notice you cannot
do this in C++, although C++ novices always try.) Here the field definitions in class
InitialValues are changed to provide initial values:

//: initialization/InitialValues2.java
// Providing explicit initial values.

public class InitialValues2 {
boolean bool = true;

char ch = ‘x’;
byte b = 47;
short s = Oxff;
int i = 999;

long 1ng = 1;

float f = 3.14f;

double d = 3.14159;
Y /1~

You can also initialize non-primitive objects in this same way. If Depth is a class, you can
create a variable and initialize it like so:

//: initialization/Measurement.java
class Depth {}

public class Measurement ({
Depth d = new Depth();
/1.

Y /1~

If you haven’t given d an initial value and you try to use it anyway, you’ll get a runtime error
called an exception (covered in the Error Handling with Exceptions chapter).

You can even call a method to provide an initialization value:

//: initialization/MethodInit.java
public class MethodInit {

int 1 = f();

int f() { return 11; }

126

Thinking in Java Bruce Eckel

Y I~

This method can have arguments, of course, but those arguments cannot be other class
members that haven’t been initialized yet. Thus, you can do this:

//: initialization/MethodInit2.java
public class MethodInit2 {

int i = f(O;

int j = g(i);

int f() { return 11; }

int g(int n) { return n * 10; }
Y /1~

But you cannot do this:

//: initialization/MethodInit3.java
public class MethodInit3 {
//V int j = g(i); // Illegal forward reference
int i = f();
int f() { return 11; }
int g(int n) { return n * 10; }
Yy /i~

This is one place in which the compiler, appropriately, does complain about forward
referencing, since this has to do with the order of initialization and not the way the program
is compiled.

This approach to initialization is simple and straightforward. It has the limitation that every
object of type InitialVValues will get these same initialization values. Sometimes this is
exactly what you need, but at other times you need more flexibility.

Constructor nitialization

The constructor can be used to perform initialization, and this gives you greater flexibility in
your programming because you can call methods and perform actions at run time to
determine the initial values. There’s one thing to keep in mind, however: You aren’t
precluding the automatic initialization, which happens before the constructor is entered. So,
for example, if you say:

//: initialization/Counter.java
public class Counter {

int 1;

Counter() { i =7; }

VA
Yy /i~

then i will first be initialized to o, then to 7. This is true with all the primitive types and with
object references, including those that are given explicit initialization at the point of
definition. For this reason, the compiler doesn’t try to force you to initialize elements in the
constructor at any particular place, or before they are used—initialization is already
guaranteed.

Order of initialization

Within a class, the order of initialization is determined by the order that the variables are
defined within the class. The variable definitions may be scattered throughout and in

Initialization & Cleanup 127

between method definitions, but the variables are initialized before any methods can be
called—even the constructor. For example:

//: initialization/OrderOfInitialization.java
// Demonstrates initialization order.
import static net.mindview.util.Print.*;

// When the constructor is called to create a
// Window object, you’ll see a message:
class Window {
Window(int marker) { print("Window(" + marker + ")"); }

}

class House {
Window wl = new Window(l); // Before constructor
House () {
// Show that we’re in the constructor:
print("House()");
w3 = new Window(33); // Reinitialize w3
}
Window w2 = new Window(2); // After constructor
void f(O) { print("f(O)"); }
Window w3 = new Window(3); // At end
}

public class OrderOfInitialization {
public static void main(String[] args) {
House h = new House();
h.f(); // Shows that construction is done
}
} /* Qutput:
Window (1)
Window(2)
Window(3)
House ()
Window(33)
O
X[/~

In House, the definitions of the Window objects are intentionally scattered about to prove
that they’ll all get initialized before the constructor is entered or anything else can happen. In
addition, w3 is reinitialized inside the constructor.

From the output, you can see that the w3 reference gets initialized twice: once before and
once during the constructor call. (The first object is dropped, so it can be garbage collected
later.) This might not seem efficient at first, but it guarantees proper initialization—what
would happen if an overloaded constructor were defined that did not initialize w3 and there
wasn’t a “default” initialization for w3 in its definition?

static data initialization

There’s only a single piece of storage for a static, regardless of how many objects are created.
You can’t apply the static keyword to local variables, so it only applies to fields. If a field is a
static primitive and you don’t initialize it, it gets the standard initial value for its type. If it’s
a reference to an object, the default initialization value is null.

If you want to place initialization at the point of definition, it looks the same as for non-
statics.

128 Thinking in Java Bruce Eckel

To see when the static storage gets initialized, here’s an example:

//: initialization/StaticInitialization.java
// Specifying initial values in a class definition.
import static net.mindview.util.Print.*;

class Bowl {
Bowl (int marker) {
print("Bowl(" + marker + ")");
}
void fl1(int marker) {
print("fl(" + marker + ")");
}
}

class Table {
static Bowl bowll = new Bowl(1l);
Table() {
print("Table()");
bowl2.f1(1);
}
void f2(int marker) {
print("f2(" + marker + ")");
}
static Bowl bowl2 = new Bowl(2);
}

class Cupboard {

Bowl bowl3 = new Bowl(3);

static Bowl bowld4 = new Bowl(4);

Cupboard() {
print("Cupboard()");
bowl4.f1(2);

}

void f3(int marker) {
print("f3(" + marker + ")");

}

static Bowl bowl5 = new Bowl(5);

}

public class StaticInitialization {
public static void main(String[] args) {
print("Creating new Cupboard() in main");
new Cupboard();
print("Creating new Cupboard() in main");
new Cupboard();
table.f2(1);
cupboard.f3(1);
}
static Table table = new Table();
static Cupboard cupboard = new Cupboard();
} /* Output:
Bowl (1)
Bow1l(2)
Table ()
f1(1)
Bowl (4)
Bowl(5)
Bowl(3)
Cupboard()
f1(2)
Creating new Cupboard() in main
Bow1l(3)

Initialization & Cleanup 129

Cupboard ()

f1(2)

Creating new Cupboard() in main
Bow1l(3)

Cupboard ()

f1(2)

f2(1)

f3(1)

11/~

Bowl allows you to view the creation of a class, and Table and Cupboard have static
members of Bowl scattered through their class definitions. Note that Cupboard creates a
non-static Bowl bowlI3 prior to the static definitions.

From the output, you can see that the static initialization occurs only if it’s necessary. If you
don’t create a Table object and you never refer to Table.bowll or Table.bowl2, the static
Bowl bowl1 and bowl2 will never be created. They are initialized only when the first Table
object is created (or the first static access occurs). After that, the static objects are not
reinitialized.

The order of initialization is statics first, if they haven’t already been initialized by a previous
object creation, and then the non-static objects. You can see the evidence of this in the
output. To execute main() (a static method), the Staticlnitialization class must be
loaded, and its static fields table and cupboard are then initialized, which causes those
classes to be loaded, and since they both contain static Bowl objects, Bowl is then loaded.
Thus, all the classes in this particular program get loaded before main() starts. This is
usually not the case, because in typical programs you won’t have everything linked together
by statics as you do in this example.

To summarize the process of creating an object, consider a class called Dog:

1. Even though it doesn’t explicitly use the static keyword, the constructor is actually a
static method. So the first time an object of type Dog is created, or the first time a
static method or static field of class Dog is accessed, the Java interpreter must
locate Dog.class, which it does by searching through the classpath.

2. AsDog.class is loaded (creating a Class object, which you’ll learn about later), all of
its static initializers are run. Thus, static initialization takes place only once, as the
Class object is loaded for the first time.

3. When you create a new Dog(), the construction process for a Dog object first
allocates enough storage for a Dog object on the heap.

4. This storage is wiped to zero, automatically setting all the primitives in that Dog
object to their default values (zero for numbers and the equivalent for boolean and
char) and the references to null.

5. Any initializations that occur at the point of field definition are executed.

6. Constructors are executed. As you shall see in the Reusing Classes chapter, this might
actually involve a fair amount of activity, especially when inheritance is involved.

Explicit static initialization

Java allows you to group other static initializations inside a special “static clause”
(sometimes called a static block) in a class. It looks like this:

130 Thinking in Java Bruce Eckel

//: initialization/Spoon.java
public class Spoon {
static int i;

static {
i=47;
}
Yy /1~

It appears to be a method, but it’s just the static keyword followed by a block of code. This
code, like other static initializations, is executed only once: the first time you make an object
of that class or the first time you access a static member of that class (even if you never
make an object of that class). For example:

//: initialization/ExplicitStatic.java
// Explicit static initialization with the "static" clause.
import static net.mindview.util.Print.*;

class Cup {
Cup(int marker) {
print("Cup(" + marker + ")");
}
void f(int marker) {
print("f(" + marker + ")");
}
}

class Cups {
static Cup cupl;
static Cup cup2;
static
cupl = new Cup(l);
cup2 = new Cup(2);

-~

}

Cups() {
print("Cups()");

}

}

public class ExplicitStatic {
public static void main(String[] args) {
print("Inside main()");
Cups.cupl.f(99); // (1)
}
// static Cups cupsl
// static Cups cups2
} /* OQutput:
Inside main()
Cup (1)
Cup(2)
f(99)
11/~

new Cups(); // (2)
new Cups(); // (2)

The static initializers for Cups run when either the access of the static object cupl occurs
on the line marked (1), or if line (1) is commented out and the lines marked (2) are
uncommented. If both (1) and (2) are commented out, the static initialization for Cups
never occurs, as you can see from the output. Also, it doesn’t matter if one or both of the lines
marked (2) are uncommented; the static initialization only occurs once.

Exercise 13: (1) Verify the statements in the previous paragraph.

Initialization & Cleanup 131

Exercise 14: (1) Create a class with a static String field that is initialized at the point of
definition, and another one that is initialized by the static block. Add a static method that
prints both fields and demonstrates that they are both initialized before they are used.

Non-static instance initialization

Java provides a similar syntax, called instance initialization, for initializing non-static
variables for each object. Here’s an example:

//: initialization/Mugs.java
// Java "Instance Initialization.”
import static net.mindview.util.Print.*;

class Mug {
Mug(int marker) {
print("Mug(" + marker + ")");
}
void f(int marker) {
print("f(" + marker + ")");
}
}

public class Mugs {

Mug mugl;

Mug mug2;

{
mugl = new Mug(l);
mug2 = new Mug(2);
print("mugl & mug2 initialized");

}

Mugs () {
print("Mugs()");

}

Mugs(int i) {
print("Mugs(int)");
}

public static void main(String[] args) {
print("Inside main()");
new Mugs();
print("new Mugs() completed");
new Mugs(1);
print("new Mugs(l) completed");
}

} /* Qutput:

Inside main()

Mug (1)

Mug(2)

mugl & mug2 initialized

Mugs ()

new Mugs() completed

Mug (1)

Mug(2)

mugl & mug2 initialized

Mugs(int)

new Mugs(l) completed

11/~

You can see that the instance initialization clause:

132 Thinking in Java Bruce Eckel

mugl = new Mug(l);

mug?2 new Mug(2);

print("mugl & mug2 initialized");
}

looks exactly like the static initialization clause except for the missing static keyword. This
syntax is necessary to support the initialization of anonymous inner classes (see the Inner
Classes chapter), but it also allows you to guarantee that certain operations occur regardless
of which explicit constructor is called. From the output, you can see that the instance
initialization clause is executed before either one of the constructors.

Exercise 15: (1) Create a class with a String that is initialized using instance
initialization.

Array initialization

An array is simply a sequence of either objects or primitives that are all the same type and are
packaged together under one identifier name. Arrays are defined and used with the square-
brackets indexing operator []. To define an array reference, you simply follow your type
name with empty square brackets:

| dint[] al;

You can also put the square brackets after the identifier to produce exactly the same
meaning;:

| dint alll;

This conforms to expectations from C and C++ programmers. The former style, however, is
probably a more sensible syntax, since it says that the type is “an int array.” That style will be
used in this book.

The compiler doesn’t allow you to tell it how big the array is. This brings us back to that issue
of “references.” All that you have at this point is a reference to an array (you’ve allocated
enough storage for that reference), and there’s been no space allocated for the array object
itself. To create storage for the array, you must write an initialization expression. For arrays,
initialization can appear anywhere in your code, but you can also use a special kind of
initialization expression that must occur at the point where the array is created. This special
initialization is a set of values surrounded by curly braces. The storage allocation (the
equivalent of using new) is taken care of by the compiler in this case. For example:

| dint[] al = {1, 2, 3, 4, 5 };

So why would you ever define an array reference without an array?
| dint[] a2;

Well, it’s possible to assign one array to another in Java, so you can say:
| a2 = al;

What you're really doing is copying a reference, as demonstrated here:

//: initialization/ArraysOfPrimitives.java
import static net.mindview.util.Print.*;

Initialization & Cleanup 133

public class ArraysOfPrimitives {
public static void main(String[] args) {

int[] al = {1, 2, 3, 4, 5 };

int[] a2;

a2 = al;

for(int = 0; 1 < a2.length; i++)
a2[i] a2[i] + 1;

for(int i = 0; i < al.length; i++)
print("al[" + i + "] =" + al[il);

I =

}
} /* Output:
al[@] =
al[l] =
al[2]
al[3]
al[4]
11/~

|
aulh WN

You can see that al is given an initialization value but a2 is not; a2 is assigned later—in this
case, to another array. Since a2 and al are then aliased to the same array, the changes made
via a2 are seen in al.

All arrays have an intrinsic member (whether they’re arrays of objects or arrays of primitives)
that you can query—but not change—to tell you how many elements there are in the array.
This member is length. Since arrays in Java, like C and C++, start counting from element
zero, the largest element you can index is length - 1. If you go out of bounds, C and C++
quietly accept this and allow you to stomp all over your memory, which is the source of many
infamous bugs. However, Java protects you against such problems by causing a runtime
error (an exception) if you step out of bounds.5

What if you don’t know how many elements you’re going to need in your array while you’re
writing the program? You simply use new to create the elements in the array. Here, new
works even though it’s creating an array of primitives (new won’t create a non-array
primitive):

//: initialization/ArrayNew.java

// Creating arrays with new.

import java.util.*;

import static net.mindview.util.Print.*;

public class ArrayNew {
public static void main(String[] args) {
int[] a;
Random rand = new Random(47);
a = new int[rand.nextInt(20)];
print("length of a = " + a.length);
print(Arrays.toString(a));
}
} /* OQutput:
length of a = 18
[6, 60, 0, 0, O, @, O, O, O, O, 0, O, @, O, 0, 0, 0, 0]
11/~

The size of the array is chosen at random by using the Random.nextInt() method, which
produces a value between zero and that of its argument. Because of the randomness, it’s clear

5 Of course, checking every array access costs time and code and there’s no way to turn it off, which means that array
accesses might be a source of inefficiency in your program if they occur at a critical juncture. For Internet security and
programmer productivity, the Java designers saw that this was a worthwhile trade-off. Although you may be tempted to
write code that you think might make array accesses more efficient, this is a waste of time because automatic compile-time
and runtime optimizations will speed array accesses.

134

Thinking in Java Bruce Eckel

that array creation is actually happening at run time. In addition, the output of this program
shows that array elements of primitive types are automatically initialized to “empty” values.
(For numerics and char, this is zero, and for boolean, it’s false.)

The Arrays.toString() method, which is part of the standard java.util library, produces a
printable version of a one-dimensional array.

Of course, in this case the array could also have been defined and initialized in the same
statement:

| int[] a = new int[rand.nextInt(20)];
This is the preferred way to do it, if you can.

If you create a non-primitive array, you create an array of references. Consider the wrapper
type Integer, which is a class and not a primitive:

//: initialization/ArrayClassObj.java

// Creating an array of nonprimitive objects.
import java.util.*;

import static net.mindview.util.Print.*;

public class ArrayClassObj {
public static void main(String[] args) {
Random rand = new Random(47);
Integer[] a = new Integer[rand.nextInt(20)];
print("length of a = " + a.length);
for(int i = 0; i < a.length; i++)
a[i] = rand.nextInt(500); // Autoboxing
print(Arrays.toString(a));
}
} /* Qutput: (Sample)
length of a = 18
[55, 193, 361, 461, 429, 368, 200, 22, 207, 288, 128, 51, 89, 309, 278,
498, 361, 20]
1]/~

Here, even after new is called to create the array:
| Integer[] a = new Integer([rand.nextInt(20)];

it’s only an array of references, and the initialization is not complete until the reference itself
is initialized by creating a new Integer object (via autoboxing, in this case):

| a[i] = rand.nextInt(500);

If you forget to create the object, however, you’ll get an exception at run time when you try to
use the empty array location.

It’s also possible to initialize arrays of objects by using the curly brace-enclosed list. There are
two forms:

//: initialization/Arraylnit.java
// Array initialization.
import java.util.*;

public class ArrayInit {
public static void main(String[] args) {
Integer[] a = {

Initialization & Cleanup 135

new Integer(l),
new Integer(2),
3, // Autoboxing
b
Integer[] b = new Integer[]{
new Integer (1),
new Integer(2),
3, // Autoboxing
b
System.out.println(Arrays.toString(a));
System.out.println(Arrays.toString(b));
}
} /* OQutput:
[1, 2, 3]
[1, 2, 3]
11/~

In both cases, the final comma in the list of initializers is optional. (This feature makes for
easier maintenance of long lists.)

Although the first form is useful, it’s more limited because it can only be used at the point
where the array is defined. You can use the second and third forms anywhere, even inside a
method call. For example, you could create an array of String objects to pass to the main()
of another method, to provide alternate command-line arguments to that main():

//: initialization/DynamicArray.java
// Array initialization.

public class DynamicArray {
public static void main(String[] args) {
Other.main(new String[]{ "fiddle", "de", "dum" });
}
}

class Other {
public static void main(String[] args) {
for(String s : args)
System.out.print(s + " ");

}
} /* OQutput:
fiddle de dum
X1/~

The array created for the argument of Other.main() is created at the point of the method
call, so you can even provide alternate arguments at the time of the call.

Exercise 16: (1) Create an array of String objects and assign a String to each element.
Print the array by using a for loop.

Exercise 17: (2) Create a class with a constructor that takes a String argument. During
construction, print the argument. Create an array of object references to this class, but don’t
actually create objects to assign into the array. When you run the program, notice whether
the initialization messages from the constructor calls are printed.

Exercise 18: (1) Complete the previous exercise by creating objects to attach to the array
of references.

136

Thinking in Java Bruce Eckel

Variable argument lists

The second form provides a convenient syntax to create and call methods that can produce
an effect similar to C’s variable argument lists (known as “varargs” in C). These can include
unknown quantities of arguments as well as unknown types. Since all classes are ultimately
inherited from the common root class Object (a subject you will learn more about as this
book progresses), you can create a method that takes an array of Object and call it like this:

//: initialization/VarArgs.java
// Using array syntax to create variable argument lists.

class A {}

public class VarArgs {
static void printArray(Object[] args) {
for(Object obj : args)
System.out.print(obj + " ");
System.out.println();
}
public static void main(String[] args) {
printArray(new Object[]{
new Integer(47), new Float(3.14), new Double(11.11)
I
printArray(new Object[]{"one", "two", "three" });
printArray(new Object[]{new A(), new A(), new A()});
}
} /* Output: (Sample)
47 3.14 11.11
one two three
A@la46e30 A@3e25a5 A@19821f
1]/~

You can see that print() takes an array of Object, then steps through the array using the
foreach syntax and prints each one. The standard Java library classes produce sensible
output, but the objects of the classes created here print the class name, followed by an ‘@’
sign and hexadecimal digits. Thus, the default behavior (if you don’t define a toString()
method for your class, which will be described later in the book) is to print the class name
and the address of the object.

You may see pre-Java SE5 code written like the above in order to produce variable argument
lists. In Java SE5, however, this long-requested feature was finally added, so you can now use
ellipses to define a variable argument list, as you can see in printArray():

//: initialization/NewVarArgs.java
// Using array syntax to create variable argument lists.

public class NewVarArgs {
static void printArray(Object... args) {
for(Object obj : args)
System.out.print(obj + " ");
System.out.println();
}
public static void main(String[] args) {
// Can take individual elements:
printArray(new Integer(47), new Float(3.14),
new Double(11.11));
printArray (47, 3.14F, 11.11);
printArray("one", "two", "three");
printArray(new A(), new A(), new A());
// Or an array:

Initialization & Cleanup 137

printArray((Object[])new Integer[1{ 1, 2, 3, 4 });
printArray(); // Empty list is OK
}
} /* OQutput: (75% match)
47 3.14 11.11
47 3.14 11.11
one two three
A@lbab50a A@c3c749 A@150bd4d
1234
1]~

With varargs, you no longer have to explicitly write out the array syntax—the compiler will
actually fill it in for you when you specify varargs. You're still getting an array, which is why
print() is able to use foreach to iterate through the array. However, it’s more than just an
automatic conversion from a list of elements to an array. Notice the second-to-last line in the
program, where an array of Integer (created using autoboxing) is cast to an Object array (to
remove a compiler warning) and passed to printArray(). Clearly, the compiler sees that
this is already an array and performs no conversion on it. So if you have a group of items you
can pass them in as a list, and if you already have an array it will accept that as the variable
argument list.

The last line of the program shows that it’s possible to pass zero arguments to a vararg list.
This is helpful when you have optional trailing arguments:

//: initialization/OptionalTrailingArguments.java

public class OptionalTrailingArguments {
static void f(int required, String... trailing) {

System.out.print("required: " + required + " ");
for(String s : trailing)
System.out.print(s + " ");

System.out.println();

}

public static void main(String[] args) {
f(l, "one");
f(2, "two", "three");
£(0):

}

} /* Output:

required: 1 one
required: 2 two three
required: ©

/1]~

This also shows how you can use varargs with a specified type other than Object. Here, all
the varargs must be String objects. It’s possible to use any type of argument in varargs,
including a primitive type. The following example also shows that the vararg list becomes an
array, and if there’s nothing in the list it’s an array of size zero:

//: initialization/VarargType.java

public class VarargType {

static void f(Character... args) {
System.out.print(args.getClass());
System.out.println(" length " + args.length);

}

static void g(int... args) {
System.out.print(args.getClass());
System.out.println(" length " + args.length);

}

public static void main(String[] args) {

138 Thinking in Java Bruce Eckel

f(a’);
fO;
g(l);
g(0);
System.out.println("int[]: " + new int[0].getClass());
}
} /* Qutput:
class [Ljava.lang.Character; length 1
class [Ljava.lang.Character; length ©
class [I length 1
class [I length O
int[]: class [I
1]/~

The getClass() method is part of Object, and will be explored fully in the Type
Information chapter. It produces the class of an object, and when you print this class, you see
an encoded string representing the class type. The leading ‘[* indicates that this is an array of
the type that follows. The ‘I’ is for a primitive int; to double-check, I created an array of int
in the last line and printed its type. This verifies that using varargs does not depend on
autoboxing, but that it actually uses the primitive types.

Varargs do work in harmony with autoboxing, however. For example:

//: initialization/AutoboxingVarargs.java

public class AutoboxingVarargs {
public static void f(Integer... args) {
for(Integer i : args)
System.out.print(i + " ");
System.out.println();
}
public static void main(String[] args) {
f(new Integer(l), new Integer(2)):
f(4, 5, 6, 7, 8, 9);
f(10, new Integer(1l), 12);

Notice that you can mix the types together in a single argument list, and autoboxing
selectively promotes the int arguments to Integer.

Varargs complicate the process of overloading, although it seems safe enough at first:

//: initialization/OverloadingVarargs.java

public class OverloadingVarargs {
static void f(Character... args) {
System.out.print("first");
for(Character ¢ : args)
System.out.print(" " + c);
System.out.println();
}
static void f(Integer... args) {
System.out.print("second");
for(Integer i : args)
System.out.print(" " + 1);
System.out.println();

Initialization & Cleanup 139

}
static void f(Long... args) {
System.out.println("third");
}
public static void main(String[] args) {
f('a’, ‘b’, ‘c’);
f(1);
f(2, 1);
f(0);
f(OL);
//V £(); // Won’t compile -- ambiguous
}
} /* OQutput:
first a b c
second 1
second 2 1
second 0
third
1]/~

In each case, the compiler is using autoboxing to match the overloaded method, and it calls
the most specifically matching method.

But when you call f() without arguments, it has no way of knowing which one to call.
Although this error is understandable, it will probably surprise the client programmer.

You might try solving the problem by adding a non-vararg argument to one of the methods:

//: initialization/OverloadingVarargs2.java
// {CompileTimeError} (Won’t compile)

public class OverloadingVarargs2 {
static void f(float i, Character... args) {
System.out.println("first");

}

static void f(Character... args) {
System.out.print("second");

}

public static void main(String[] args) {
f(l, ‘a’);
f(‘a’, ‘b’);

}

Yy /i~

The {CompileTimeError} comment tag excludes the file from this book’s Ant build. If you
compile it by hand you'll see the error message:

reference to f is ambiguous, both method f(float,java.lang.Character...) in
OverloadingVarargs2 and method f(java.lang.Character...) in OverloadingVarargs2
match

If you give both methods a non-vararg argument, it works:

//: initialization/OverloadingVarargs3.java

public class OverloadingVarargs3 {

static void f(float i, Character... args) {
System.out.println("first");

}

static void f(char c, Character... args) {

140

Thinking in Java Bruce Eckel

System.out.println("second");
}
public static void main(String[] args) {
f(l, ‘a’);
f(a’, ‘b’);
}
} /* Qutput:
first
second
1]/~

You should generally only use a variable argument list on one version of an overloaded
method. Or consider not doing it at all.

Exercise 19: (2) Write a method that takes a vararg String array. Verify that you can
pass either a comma-separated list of Strings or a String[] into this method.

Exercise 20: (1) Create a main() that uses varargs instead of the ordinary main()
syntax. Print all the elements in the resulting args array. Test it with various numbers of
command-line arguments.

Enumerated types

An apparently small addition in Java SE5 is the enum keyword, which makes your life much
easier when you need to group together and use a set of enumerated types. In the past you
would have created a set of constant integral values, but these do not naturally restrict
themselves to your set and thus are riskier and more difficult to use. Enumerated types are a
common enough need that C, C++, and a number of other languages have always had them.
Before Java SE5, Java programmers were forced to know a lot and be quite careful when they
wanted to properly produce the enum effect. Now Java has enum, too, and it’s much more
full-featured than what you find in C/C++. Here’s a simple example:

//: initialization/Spiciness.java

public enum Spiciness {
NOT, MILD, MEDIUM, HOT, FLAMING
Y /i~

This creates an enumerated type called Spiciness with five named values. Because the
instances of enumerated types are constants, they are in all capital letters by convention (if
there are multiple words in a name, they are separated by underscores).

To use an enum, you create a reference of that type and assign it to an instance:

//: initialization/SimpleEnumUse.java

public class SimpleEnumUse ({
public static void main(String[] args) {
Spiciness howHot = Spiciness.MEDIUM;
System.out.println(howHot);
}
} /* Qutput:
MEDIUM
/1]~

The compiler automatically adds useful features when you create an enum. For example, it
creates a toString() so that you can easily display the name of an enum instance, which is
how the print statement above produced its output. The compiler also creates an ordinal()

Initialization & Cleanup 141

method to indicate the declaration order of a particular enum constant, and a static
values() method that produces an array of values of the enum constants in the order that
they were declared:

//: initialization/EnumOrder.java

public class EnumOrder {

public static void main(String[] args) {
for(Spiciness s : Spiciness.values())
System.out.println(s + ", ordinal " + s.ordinal());

}

} /* Qutput:

NOT, ordinal ©

MILD, ordinal 1

MEDIUM, ordinal 2

HOT, ordinal 3

FLAMING, ordinal 4

1]/~

Although enums appear to be a new data type, the keyword only produces some compiler
behavior while generating a class for the enum, so in many ways you can treat an enum as
if it were any other class. In fact, enums are classes and have their own methods.

An especially nice feature is the way that enums can be used inside switch statements:

//: initialization/Burrito.java

public class Burrito {
Spiciness degree;
public Burrito(Spiciness degree) { this.degree = degree;}
public void describe() {
System.out.print("This burrito is ");
switch(degree) {

case NOT: System.out.println("not spicy at all.");
break;
case MILD:
case MEDIUM: System.out.println("a little hot.");
break;
case HOT:
case FLAMING:
default: System.out.println("maybe too hot.");
}
}
public static void main(String[] args) {
Burrito

plain = new Burrito(Spiciness.NOT),
greenChile = new Burrito(Spiciness.MEDIUM),
jalapeno = new Burrito(Spiciness.HOT);
plain.describe();
greenChile.describe();
jalapeno.describe();
}
} /* Qutput:
This burrito is not spicy at all.
This burrito is a little hot.
This burrito is maybe too hot.
¥1/] i~

Since a switch is intended to select from a limited set of possibilities, it’s an ideal match for
an enum. Notice how the enum names can produce a much clearer indication of what the
program means to do.

142 Thinking in Java Bruce Eckel

In general you can use an enum as if it were another way to create a data type, and then just
put the results to work. That’s the point, so you don’t have to think too hard about them.
Before the introduction of enum in Java SE5, you had to go to a lot of effort to make an
equivalent enumerated type that was safe to use.

This is enough for you to understand and use basic enums, but we’ll look more deeply at
them later in the book—they have their own chapter: Enumerated Types.

Exercise 21: (1) Create an enum of the least-valuable six types of paper currency. Loop
through the values() and print each value and its ordinal().

Exercise 22: (2) Write a switch statement for the enum in the previous example. For
each case, output a description of that particular currency.

Summary

This seemingly elaborate mechanism for initialization, the constructor, should give you a
strong hint about the critical importance placed on initialization in the language. As Bjarne
Stroustrup, the inventor of C++, was designing that language, one of the first observations he
made about productivity in C was that improper initialization of variables causes a significant
portion of programming problems. These kinds of bugs are hard to find, and similar issues
apply to improper cleanup. Because constructors allow you to guarantee proper initialization
and cleanup (the compiler will not allow an object to be created without the proper
constructor calls), you get complete control and safety.

In C++, destruction is quite important because objects created with new must be explicitly
destroyed. In Java, the garbage collector automatically releases the memory for all objects, so
the equivalent cleanup method in Java isn’t necessary much of the time (but when it is, you
must do it yourself). In cases where you don’t need destructor-like behavior, Java’s garbage
collector greatly simplifies programming and adds much-needed safety in managing
memory. Some garbage collectors can even clean up other resources like graphics and file
handles. However, the garbage collector does add a runtime cost, the expense of which is
difficult to put into perspective because of the historical slowness of Java interpreters.
Although Java has had significant performance increases over time, the speed problem has
taken its toll on the adoption of the language for certain types of programming problems.

Because of the guarantee that all objects will be constructed, there’s actually more to the
constructor than what is shown here. In particular, when you create new classes using either
composition or inheritance, the guarantee of construction also holds, and some additional
syntax is necessary to support this. You'll learn about composition, inheritance, and how they
affect constructors in future chapters.

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide,
available for sale from www.MindView.net.

Initialization & Cleanup 143

Access Control

Access control (or implementation hiding) is about “not getting it
right the first time.”

All good writers—including those who write software—know that a piece of work isn’t good
until it’s been rewritten, often many times. If you leave a piece of code in a drawer for a while
and come back to it, you may see a much better way to do it. This is one of the prime
motivations for refactoring, which rewrites working code in order to make it more readable,
understandable, and thus maintainable.?

There is a tension, however, in this desire to change and improve your code. There are often
consumers (client programmers) who rely on some aspect of your code staying the same. So
you want to change it; they want it to stay the same. Thus a primary consideration in object-
oriented design is to “separate the things that change from the things that stay the same.”

This is particularly important for libraries. Consumers of that library must rely on the part
they use, and know that they won’t need to rewrite code if a new version of the library comes
out. On the flip side, the library creator must have the freedom to make modifications and
improvements with the certainty that the client code won'’t be affected by those changes.

This can be achieved through convention. For example, the library programmer must agree
not to remove existing methods when modifying a class in the library, since that would break
the client programmer’s code. The reverse situation is thornier, however. In the case of a
field, how can the library creator know which fields have been accessed by client
programmers? This is also true with methods that are only part of the implementation of a
class, and not meant to be used directly by the client programmer. What if the library creator
wants to rip out an old implementation and put in a new one? Changing any of those
members might break a client programmer’s code. Thus the library creator is in a strait jacket
and can’t change anything.

To solve this problem, Java provides access specifiers to allow the library creator to say what
is available to the client programmer and what is not. The levels of access control from “most
access” to “least access” are public, protected, package access (which has no keyword), and
private. From the previous paragraph you might think that, as a library designer, you’ll want
to keep everything as “private” as possible, and expose only the methods that you want the
client programmer to use. This is exactly right, even though it’s often counterintuitive for
people who program in other languages (especially C) and who are used to accessing
everything without restriction. By the end of this chapter you should be convinced of the
value of access control in Java.

The concept of a library of components and the control over who can access the components
of that library is not complete, however. There’s still the question of how the components are
bundled together into a cohesive library unit. This is controlled with the package keyword in
Java, and the access specifiers are affected by whether a class is in the same package or in a
separate package. So to begin this chapter, you’ll learn how library components are placed
into packages. Then you’ll be able to understand the complete meaning of the access
specifiers.

1 See Refactoring: Improving the Design of Existing Code, by Martin Fowler, et al. (Addison-Wesley, 1999). Occasionally
someone will argue against refactoring, suggesting that code which works is perfectly good and it’s a waste of time to
refactor it. The problem with this way of thinking is that the lion’s share of a project’s time and money is not in the initial
writing of the code, but in maintaining it. Making code easier to understand translates into very significant dollars.

package: the library unit

A package contains a group of classes, organized together under a single namespace.

For example, there’s a utility library that’s part of the standard Java distribution, organized
under the namespace java.util. One of the classes in java.util is called ArrayList. One way
to use an ArrayList is to specify the full name java.util.ArrayList.

//: access/FullQualification.java

public class FullQualification {
public static void main(String[] args) {
java.util.ArraylList list = new java.util.ArrayList();

}
Yy I/~

This rapidly becomes tedious, so you’ll probably want to use the import keyword instead. If
you want to import a single class, you can name that class in the import statement:

//: access/SinglelImport.java
import java.util.ArraylList;

public class SinglelImport {
public static void main(String[] args) {
ArraylList 1ist = new java.util.ArrayList();

}
Yy I/~

Now you can use ArrayL.ist with no qualification. However, none of the other classes in
java.util are available. To import everything, you simply use the **’ as you’ve been seeing in
the rest of the examples in this book:

import java.util.*;

The reason for all this importing is to provide a mechanism to manage namespaces. The
names of all your class members are insulated from each other. A method f() inside a class A
will not clash with an f() that has the same signature in class B. But what about the class
names? Suppose you create a Stack class that is installed on a machine that already has a
Stack class that’s written by someone else? This potential clashing of names is why it’s
important to have complete control over the namespaces in Java, and to create a unique
identifier combination for each class.

Most of the examples thus far in this book have existed in a single file and have been
designed for local use, so they haven’t bothered with package names. These examples have
actually been in packages: the “unnamed” or default package. This is certainly an option, and
for simplicity’s sake this approach will be used whenever possible throughout the rest of this
book. However, if you're planning to create libraries or programs that are friendly to other
Java programs on the same machine, you must think about preventing class name clashes.

When you create a source-code file for Java, it’s commonly called a compilation unit
(sometimes a translation unit). Each compilation unit must have a name ending in .java,
and inside the compilation unit there can be a public class that must have the same name as
the file (including capitalization, but excluding the .java file name extension). There can be
only one public class in each compilation unit; otherwise, the compiler will complain. If
there are additional classes in that compilation unit, they are hidden from the world outside
that package because they’re not public, and they comprise “support” classes for the main
public class.

146

Thinking in Java Bruce Eckel

Code organization

When you compile a .java file, you get an output file for each class in the .java file. Each
output file has the name of a class in the .java file, but with an extension of .class. Thus you
can end up with quite a few .class files from a small number of .java files. If you've
programmed with a compiled language, you might be used to the compiler spitting out an
intermediate form (usually an “obj” file) that is then packaged together with others of its kind
using a linker (to create an executable file) or a librarian (to create a library). That’s not how
Java works. A working program is a bunch of .class files, which can be packaged and
compressed into a Java ARchive (JAR) file (using Java’s jar archiver). The Java interpreter is
responsible for finding, loading, and interpreting? these files.

Alibrary is a group of these class files. Each source file usually has a public class and any
number of non-public classes, so there’s one public component for each source file. If you
want to say that all these components (each in its own separate .java and .class files) belong
together, that’s where the package keyword comes in.

If you use a package statement, it must appear as the first non-comment in the file. When
you say:

| package access;

you're stating that this compilation unit is part of a library named access. Put another way,
you're saying that the public class name within this compilation unit is under the umbrella
of the name access, and anyone who wants to use that name must either fully specify the
name or use the import keyword in combination with access, using the choices given
previously. (Note that the convention for Java package names is to use all lowercase letters,
even for intermediate words.)

For example, suppose the name of the file is MyClass.java. This means there can be one
and only one public class in that file, and the name of that class must be MyClass
(including the capitalization):

//: access/mypackage/MyClass.java
package access.mypackage;

public class MyClass {
/1.
Yy /i~

Now, if someone wants to use MyClass or, for that matter, any of the other public classes in
access, they must use the import keyword to make the name or names in access available.
The alternative is to give the fully qualified name:

//: access/QualifiedMyClass.java

public class QualifiedMyClass {
public static void main(String[] args) {
access.mypackage.MyClass m =
new access.mypackage.MyClass();
}

Yy /i~

2 There’s nothing in Java that forces the use of an interpreter. There exist native-code Java compilers that generate a
single executable file.

Access Control 147

The import keyword can make this much cleaner:

//: access/ImportedMyClass.java
import access.mypackage.*;

public class ImportedMyClass {
public static void main(String[] args) {
MyClass m = new MyClass();

}
Yy I/~

It’s worth keeping in mind that what the package and import keywords allow you to do, as
a library designer, is to divide up the single global namespace so you won’t have clashing
names, no matter how many people get on the Internet and start writing classes in Java.

Creating unique package names

You might observe that, since a package never really gets “packaged” into a single file, a
package can be made up of many .class files, and things could get a bit cluttered. To prevent
this, a logical thing to do is to place all the .class files for a particular package into a single
directory; that is, use the hierarchical file structure of the operating system to your
advantage. This is one way that Java references the problem of clutter; you'll see the other
way later when the jar utility is introduced.

Collecting the package files into a single subdirectory solves two other problems: creating
unique package names, and finding those classes that might be buried in a directory
structure someplace. This is accomplished by encoding the path of the location of the .class
file into the name of the package. By convention, the first part of the package name is the
reversed Internet domain name of the creator of the class. Since Internet domain names are
guaranteed to be unique, if you follow this convention, your package name will be unique
and you’ll never have a name clash. (That is, until you lose the domain name to someone else
who starts writing Java code with the same path names as you did.) Of course, if you don’t
have your own domain name, then you must fabricate an unlikely combination (such as your
first and last name) to create unique package names. If you've decided to start publishing
Java code, it’s worth the relatively small effort to get a domain name.

The second part of this trick is resolving the package name into a directory on your
machine, so that when the Java program runs and it needs to load the .class file, it can
locate the directory where the .class file resides.

The Java interpreter proceeds as follows. First, it finds the environment variable
CLASSPATHS (set via the operating system, and sometimes by the installation program that
installs Java or a Java-based tool on your machine). CLASSPATH contains one or more
directories that are used as roots in a search for .class files. Starting at that root, the
interpreter will take the package name and replace each dot with a slash to generate a path
name off of the CLASSPATH root (so package foo.bar.baz becomes foo\bar\baz or
foo/bar/baz or possibly something else, depending on your operating system). This is then
concatenated to the various entries in the CLASSPATH. That’s where it looks for the .class
file with the name corresponding to the class you're trying to create. (It also searches some
standard directories relative to where the Java interpreter resides.)

To understand this, consider my domain name, which is MindView.net. By reversing this
and making it all lowercase, net.mindview establishes my unique global name for my

classes. (The com, edu, org, etc., extensions were formerly capitalized in Java packages, but
this was changed in Java 2 so the entire package name is lowercase.) I can further subdivide

3 When referring to the environment variable, capital letters will be used (CLASSPATH).

148

Thinking in Java Bruce Eckel

this by deciding that I want to create a library named simple, so I'll end up with a package
name:

| package net.mindview.simple;
Now this package name can be used as an umbrella namespace for the following two files:

//: net/mindview/simple/Vector.java
// Creating a package.
package net.mindview.simple;

public class Vector {
public Vector() {
System.out.println("net.mindview.simple.Vector");
}

Yy I~

As mentioned before, the package statement must be the first non-comment code in the file.
The second file looks much the same:

//: net/mindview/simple/List.java
// Creating a package.
package net.mindview.simple;

public class List {
public List() {
System.out.println("net.mindview.simple.List");
}

Yy I/~

Both of these files are placed in the subdirectory on my system:
| C:\DOC\JavaT\net\mindview\simple

(Notice that the first comment line in every file in this book establishes the directory location
of that file in the source-code tree—this is used by the automatic code-extraction tool for this

book.)

If you walk back through this path, you can see the package name net.mindview.simple,
but what about the first portion of the path? That’s taken care of by the CLASSPATH
environment variable, which is, on my machine:

‘ CLASSPATH=. ;D:\JAVA\LIB;C:\DOC\JavaT
You can see that the CLASSPATH can contain a number of alternative search paths.

There’s a variation when using JAR files, however. You must put the actual name of the JAR
file in the classpath, not just the path where it’s located. So for a JAR named grape.jar your
classpath would include:

| CLASSPATH=.;D:\JAVA\LIB;C:\flavors\grape.jar
Once the classpath is set up properly, the following file can be placed in any directory:

//: access/LibTest.java
// Uses the library.
import net.mindview.simple.*;

Access Control 149

public class LibTest {
public static void main(String[] args) {
Vector v = new Vector();
List 1 = new List();

}
} /* Qutput:
net.mindview.simple.Vector
net.mindview.simple.List
11/~

When the compiler encounters the import statement for the simple library, it begins
searching at the directories specified by CLASSPATH, looking for subdirectory
net/mindview/simple, then seeking the compiled files of the appropriate names
(Vector.class for Vector, and List.class for List). Note that both the classes and the
desired methods in Vector and List must be public.

Setting the CLASSPATH has been such a trial for beginning Java users (it was for me, when I
started) that Sun made the JDK in later versions of Java a bit smarter. You’ll find that when
you install it, even if you don’t set the CLASSPATH, you’ll be able to compile and run basic
Java programs. To compile and run the source-code package for this book (available at
www.MindView.net), however, you will need to add the base directory of the book’s code
tree to your CLASSPATH.

Exercise 1: (1) Create a class in a package. Create an instance of your class outside of that
package.

Collisions

What happens if two libraries are imported via “** and they include the same names? For
example, suppose a program does this:

import net.mindview.simple.*;
import java.util.*;

Since java.util.* also contains a Vector class, this causes a potential collision. However, as
long as you don’t write the code that actually causes the collision, everything is OK—this is
good, because otherwise you might end up doing a lot of typing to prevent collisions that
would never happen.

The collision does occur if you now try to make a Vector:

Vector v = new Vector();

Which Vector class does this refer to? The compiler can’t know, and the reader can’t know
either. So the compiler complains and forces you to be explicit. If I want the standard Java
Vector, for example, I must say:

java.util.Vector v = new java.util.Vector();

Since this (along with the CLASSPATH) completely specifies the location of that Vector,
there’s no need for the import java.util.* statement unless I'm using something else from
java.util.

Alternatively, you can use the single-class import form to prevent clashes—as long as you

don’t use both colliding names in the same program (in which case you must fall back to fully
specifying the names).

150

Thinking in Java Bruce Eckel

Exercise 2: (1) Take the code fragments in this section and turn them into a program,
and verify that collisions do in fact occur.

A custom tool library

With this knowledge, you can now create your own libraries of tools to reduce or eliminate
duplicate code. Consider, for example, the alias we’ve been using for
System.out.printin(), to reduce typing. This can be part of a class called Print so that you
end up with a readable static import:

//: net/mindview/util/Print.java

// Print methods that can be used without

// qualifiers, using Java SE5 static imports:
package net.mindview.util;

import java.io.*;

public class Print {
// Print with a newline:
public static void print(Object obj) {
System.out.println(obj);
}
// Print a newline by itself:
public static void print() {
System.out.printiln();
}
// Print with no line break:
public static void printnb(Object obj) {
System.out.print(obj);
}
// The new Java SE5 printf() (from C):
public static PrintStream
printf(String format, Object... args) {
return System.out.printf(format, args);
}
Yy /i~

You can use the printing shorthand to print anything, either with a newline (print()) or
without a newline (printnb()).

You can guess that the location of this file must be in a directory that starts at one of the
CLASSPATH locations, then continues into net/mindview. After compiling, the static
print() and printnb() methods can be used anywhere on your system with an import
static statement:

//: access/PrintTest.java
// Uses the static printing methods in Print.java.
import static net.mindview.util.Print.*;

public class PrintTest {
public static void main(String[] args) {
print("Available from now on!");
print(100);
print(100L);
print(3.14159);
}
} /* Qutput:
Available from now on!
100
100
3.14159

Access Control 151

11/~

A second component of this library can be the range() methods, introduced in the
Controlling Execution chapter, that allow the use of the foreach syntax for simple integer
sequences:

//: net/mindview/util/Range.java

// Array creation methods that can be used without
// qualifiers, using Java SE5 static imports:
package net.mindview.util;

public class Range {
// Produce a sequence [0..n)
public static int[] range(int n) {
int[] result = new int[n];
for(int i = 0; i < n; i++)
resultf[i] = i;
return result;
}
// Produce a sequence [start..end)
public static int[] range(int start, int end) {
int sz = end - start;
int[] result = new int[sz];
for(int i = 0; i < sz; i++)
result[i] = start + i,
return result;
}
// Produce a sequence [start..end) incrementing by step
public static int[] range(int start, int end, int step) {
int sz = (end - start)/step;
int[] result = new int[sz];
for(int i = 0; i < sz; i++)
result[i] = start + (i * step);
return result;
}
Yy /1~

From now on, whenever you come up with a useful new utility, you can add it to your own
library. You’'ll see more components added to the net.mindview.util library throughout the
book.

Using imports to change behavior

A feature that is missing from Java is C’s conditional compilation, which allows you to
change a switch and get different behavior without changing any other code. The reason such
a feature was left out of Java is probably because it is most often used in C to solve cross-
platform issues: Different portions of the code are compiled depending on the target
platform. Since Java is intended to be automatically cross-platform, such a feature should
not be necessary.

However, there are other valuable uses for conditional compilation. A very common use is for
debugging code. The debugging features are enabled during development and disabled in the
shipping product. You can accomplish this by changing the package that’s imported in order
to change the code used in your program from the debug version to the production version.
This technique can be used for any kind of conditional code.

Exercise 3: (2) Create two packages: debug and debugoff, containing an identical class
with a debug() method. The first version displays its String argument to the console, the

152

Thinking in Java Bruce Eckel

second does nothing. Use a static import line to import the class into a test program, and
demonstrate the conditional compilation effect.

Package caveat

It’s worth remembering that anytime you create a package, you implicitly specify a directory
structure when you give the package a name. The package must live in the directory indicated
by its name, which must be a directory that is searchable starting from the CLASSPATH.
Experimenting with the package keyword can be a bit frustrating at first, because unless you
adhere to the package-name to directory-path rule, you’ll get a lot of mysterious runtime
messages about not being able to find a particular class, even if that class is sitting there in
the same directory. If you get a message like this, try commenting out the package
statement, and if it runs, you’ll know where the problem lies.

Note that compiled code is often placed in a different directory than source code, but the path
to the compiled code must still be found by the JVM using the CLASSPATH.

Java access specifiers

The Java access specifiers public, protected, and private are placed in front of each
definition for each member in your class, whether it’s a field or a method. Each access
specifier only controls the access for that particular definition.

If you don’t provide an access specifier, it means “package access.” So one way or another,
everything has some kind of access control. In the following sections, you’ll learn about the
various types of access.

Package access

All the examples before this chapter used no access specifiers. The default access has no
keyword, but it is commonly referred to as package access (and sometimes “friendly”). It
means that all the other classes in the current package have access to that member, but to all
the classes outside of this package, the member appears to be private. Since a compilation
unit—a file—can belong only to a single package, all the classes within a single compilation
unit are automatically available to each other via package access.

Package access allows you to group related classes together in a package so that they can
easily interact with each other. When you put classes together in a package, thus granting
mutual access to their package-access members, you “own” the code in that package. It
makes sense that only code that you own should have package access to other code that you
own. You could say that package access gives a meaning or a reason for grouping classes
together in a package. In many languages the way you organize your definitions in files can
be arbitrary, but in Java you're compelled to organize them in a sensible fashion. In addition,
you’ll probably want to exclude classes that shouldn’t have access to the classes being defined
in the current package.

The class controls the code that has access to its members. Code from another package can’t
just come around and say, “Hi, I'm a friend of Bob’s!” and expect to be shown the
protected, package-access, and private members of Bob. The only way to grant access to a
member is to:

1. Make the member public. Then everybody, everywhere, can access it.

Access Control 153

2. Give the member package access by leaving off any access specifier, and put the other
classes in the same package. Then the other classes in that package can access the
member.

3. Asyou'll see in the Reusing Classes chapter, when inheritance is introduced, an
inherited class can access a protected member as well as a public member (but not
private members). It can access package-access members only if the two classes are
in the same package. But don’t worry about inheritance and protected right now.

4. Provide “accessor/mutator” methods (also known as “get/set” methods) that read and
change the value. This is the most civilized approach in terms of OOP, and it is
fundamental to JavaBeans, as you’ll see in the Graphical User Interfaces chapter.

public: interface access

When you use the public keyword, it means that the member declaration that immediately
follows public is available to everyone, in particular to the client programmer who uses the
library. Suppose you define a package dessert containing the following compilation unit:

//: access/dessert/Cookie.java
// Creates a library.
package access.dessert;

public class Cookie {
public Cookie() {
System.out.println("Cookie constructor");

}
void bite() { System.out.println("bite"); }
Y /i~

Remember, the class file produced by Cookie.java must reside in a subdirectory called
dessert, in a directory under access (indicating the Access Control chapter of this book)
that must be under one of the CLASSPATH directories. Don’t make the mistake of thinking
that Java will always look at the current directory as one of the starting points for searching.
If you don’t have a .’ as one of the paths in your CLASSPATH, Java won’t look there.

Now if you create a program that uses Cookie:

//: access/Dinner.java
// Uses the library.
import access.dessert.*;

public class Dinner {
public static void main(String[] args) {
Cookie x = new Cookie();
//! x.bite(); // Can’t access
}
} /* Qutput:
Cookie constructor
11/~

you can create a Cookie object, since its constructor is public and the class is public. (We'll
look more at the concept of a public class later.) However, the bite() member is
inaccessible inside Dinner.java since bite() provides access only within package dessert,
so the compiler prevents you from using it.

154

Thinking in Java Bruce Eckel

The default package

You might be surprised to discover that the following code compiles, even though it would
appear that it breaks the rules:

//: access/Cake.java
// Accesses a class in a separate compilation unit.

class Cake {
public static void main(String[] args) {
Pie x = new Pie();
x.fO);
}
} /* Qutput:
Pie.f()
1]/~

In a second file in the same directory:

//: access/Pie.java
// The other class.

class Pie {
void f() { System.out.println("Pie.f()"); }
Yy /i~

You might initially view these as completely foreign files, and yet Cake is able to create a Pie
object and call its f() method. (Note that you must have ‘.” in your CLASSPATH in order for
the files to compile.) You’d typically think that Pie and f() have package access and are
therefore not available to Cake. They do have package access—that part is correct. The
reason that they are available in Cake.java is because they are in the same directory and
have no explicit package name. Java treats files like this as implicitly part of the “default
package” for that directory, and thus they provide package access to all the other files in that
directory.

private: you can’t touch that!

The private keyword means that no one can access that member except the class that
contains that member, inside methods of that class. Other classes in the same package cannot
access private members, so it’s as if you're even insulating the class against yourself. On the
other hand, it’s not unlikely that a package might be created by several people collaborating
together, so private allows you to freely change that member without concern that it will
affect another class in the same package.

The default package access often provides an adequate amount of hiding; remember, a
packageaccess member is inaccessible to the client programmer using the class. This is nice,
since the default access is the one that you normally use (and the one that you’ll get if you
forget to add any access control). Thus, you’ll typically think about access for the members
that you explicitly want to make public for the client programmer, and as a result, you might
initially think that you won’t use the private keyword very often, since it’s tolerable to get
away without it. However, it turns out that the consistent use of private is very important,
especially where multithreading is concerned. (As you’ll see in the Concurrency chapter.)

Here’s an example of the use of private:

//: access/IceCream.java
// Demonstrates "private" keyword.

Access Control 155

class Sundae {
private Sundae() {}
static Sundae makeASundae() {
return new Sundae() ;

}
}

public class IceCream {
public static void main(String[] args) {
//! Sundae x = new Sundae();
Sundae x = Sundae.makeASundae() ;

}
Yy I/~

This shows an example in which private comes in handy: You might want to control how an
object is created and prevent someone from directly accessing a particular constructor (or all
of them). In the preceding example, you cannot create a Sundae object via its constructor;
instead, you must call the makeASundae() method to do it for you.4

Any method that you're certain is only a “helper” method for that class can be made private,
to ensure that you don’t accidentally use it elsewhere in the package and thus prohibit
yourself from changing or removing the method. Making a method private guarantees that
you retain this option.

The same is true for a private field inside a class. Unless you must expose the underlying
implementation (which is less likely than you might think), you should make all fields
private. However, just because a reference to an object is private inside a class doesn’t
mean that some other object can’t have a public reference to the same object. (See the online
supplements for this book to learn about aliasing issues.)

protected: inheritance access

Understanding the protected access specifier requires a jump ahead. First, you should be
aware that you don’t need to understand this section to continue through this book up
through inheritance (the Reusing Classes chapter). But for completeness, here is a brief
description and example using protected.

The protected keyword deals with a concept called inheritance, which takes an existing
class— which we refer to as the base class—and adds new members to that class without
touching the existing class. You can also change the behavior of existing members of the
class. To inherit from a class, you say that your new class extends an existing class, like this:

class Foo extends Bar {
The rest of the class definition looks the same.

If you create a new package and inherit from a class in another package, the only members
you have access to are the public members of the original package. (Of course, if you
perform the inheritance in the same package, you can manipulate all the members that have
package access.) Sometimes the creator of the base class would like to take a particular
member and grant access to derived classes but not the world in general. That’s what
protected does. protected also gives package access—that is, other classes in the same
package may access protected elements.

4 There’s another effect in this case: Since the default constructor is the only one defined, and it’s private, it will prevent
inheritance of this class. (A subject that will be introduced later.)

156

Thinking in Java Bruce Eckel

If you refer back to the file Cookie.java, the following class cannot call the package-access
member bite():

//: access/ChocolateChip.java
// Can’t use package-access member from another package.
import access.dessert.*;

public class ChocolateChip extends Cookie {
public ChocolateChip() {
System.out.println("ChocolateChip constructor");
}
public void chomp() {
//! bite(); // Can’t access bite
}

public static void main(String[] args) {
ChocolateChip x = new ChocolateChip();
X.chomp();
}
} /* Output:
Cookie constructor
ChocolateChip constructor
1]/~

One of the interesting things about inheritance is that if a method bite() exists in class
Cookie, then it also exists in any class inherited from Cookie. But since bite() has package
access and is in a foreign package, it’s unavailable to us in this one. Of course, you could
make it public, but then everyone would have access, and maybe that’s not what you want. If
you change the class Cookie as follows:

//: access/cookie2/Cookie.java
package access.cookie2;

public class Cookie {
public Cookie() {
System.out.println("Cookie constructor");
}

protected void bite() {
System.out.println("bite");
}

Yy /i~

now bite() becomes accessible to anyone inheriting from Cookie:

//: access/ChocolateChip2.java
import access.cookie2.*;

public class ChocolateChip2 extends Cookie {
public ChocolateChip2() {
System.out.println("ChocolateChip2 constructor");
}
public void chomp() { bite(); } // Protected method
public static void main(String[] args) {
ChocolateChip2 x = new ChocolateChip2();
Xx.chomp();
}
} /* Qutput:
Cookie constructor
ChocolateChip2 constructor
bite
1]/~

Access Control 157

Note that, although bite() also has package access, it is not public.
Exercise 4: (2) Show that protected methods have package access but are not public.

Exercise 5: (2) Create a class with public, private, protected, and package-access
fields and method members. Create an object of this class and see what kind of compiler
messages you get when you try to access all the class members. Be aware that classes in the
same directory are part of the “default” package.

Exercise 6: (1) Create a class with protected data. Create a second class in the same file
with a method that manipulates the protected data in the first class.

Interface and implementation

Access control is often referred to as implementation hiding. Wrapping data and methods
within classes in combination with implementation hiding is often called encapsulation.5
The result is a data type with characteristics and behaviors.

Access control puts boundaries within a data type for two important reasons. The first is to
establish what the client programmers can and can’t use. You can build your internal
mechanisms into the structure without worrying that the client programmers will
accidentally treat the internals as part of the interface that they should be using.

This feeds directly into the second reason, which is to separate the interface from the
implementation. If the structure is used in a set of programs, but client programmers can’t
do anything but send messages to the public interface, then you are free to change anything
that’s not public (e.g., package access, protected, or private) without breaking client code.

For clarity, you might prefer a style of creating classes that puts the public members at the
beginning, followed by the protected, package-access, and private members. The
advantage is that the user of the class can then read down from the top and see first what’s
important to them (the public members, because they can be accessed outside the file), and
stop reading when they encounter the non-public members, which are part of the internal
implementation:

//: access/0OrganizedByAccess.java

public class OrganizedByAccess {

public void publ() { /* ... */ }
public void pub2() { /* ... */ }
public void pub3() { /* ... */ }
private void privl() { /* ... */ }
private void priv2() { /* ... */ }
private void priv3() { /* ... */ }
private int 1i;
/...

Y I~

This will make it only partially easier to read, because the interface and implementation are
still mixed together. That is, you still see the source code—the implementation—because it’s
right there in the class. In addition, the comment documentation supported by Javadoc
lessens the importance of code readability by the client programmer. Displaying the interface
to the consumer of a class is really the job of the class browser, a tool whose job is to look at
all the available classes and show you what you can do with them (i.e., what members are

5 However, people often refer to implementation hiding alone as encapsulation.

158

Thinking in Java Bruce Eckel

available) in a useful fashion. In Java, viewing the JDK documentation with a Web browser
gives you the same effect as a class browser.

Class access

In Java, the access specifiers can also be used to determine which classes within a library will
be available to the users of that library. If you want a class to be available to a client
programmer, you use the public keyword on the entire class definition. This controls
whether the client programmer can even create an object of the class.

To control the access of a class, the specifier must appear before the keyword class. Thus you
can say:

| public class Widget {

Now if the name of your library is access, any client programmer can access Widget by
saying

\ import access.Widget;
or
| import access.*;

However, there’s an extra set of constraints:

1. There can be only one public class per compilation unit (file). The idea is that each
compilation unit has a single public interface represented by that public class. It can
have as many supporting package-access classes as you want. If you have more than
one public class inside a compilation unit, the compiler will give you an error
message.

2. The name of the public class must exactly match the name of the file containing the
compilation unit, including capitalization. So for Widget, the name of the file must be
Widget.java, not widget.java or WIDGET .java. Again, you'll get a compile-time
error if they don’t agree.

3. Itis possible, though not typical, to have a compilation unit with no public class at
all. In this case, you can name the file whatever you like (although naming it
arbitrarily will be confusing to people reading and maintaining the code).

What if you’ve got a class inside access that you’re only using to accomplish the tasks
performed by Widget or some other public class in access? You don’t want to go to the
bother of creating documentation for the client programmer, and you think that sometime
later you might want to completely change things and rip out your class altogether,
substituting a different one. To give you this flexibility, you need to ensure that no client
programmers become dependent on your particular implementation details hidden inside
access. To accomplish this, you just leave the public keyword off the class, in which case it
has package access. (That class can be used only within that package.)

Exercise 7: (1) Create the library according to the code fragments describing access and
Widget. Create a Widget in a class that is not part of the access package.

When you create a package-access class, it still makes sense to make the fields of the class
private—you should always make fields as private as possible—but it’s generally reasonable
to give the methods the same access as the class (package access). Since a package-access

Access Control 159

class is usually used only within the package, you only need to make the methods of such a
class public if you're forced to, and in those cases, the compiler will tell you.

Note that a class cannot be private (that would make it inaccessible to anyone but the class)
or protected.® So you have only two choices for class access: package access or public. If
you don’t want anyone else to have access to that class, you can make all the constructors
private, thereby preventing anyone but you, inside a static member of the class, from
creating an object of that class. Here’s an example:

//: access/Lunch.java
// Demonstrates class access specifiers. Make a class
// effectively private with private constructors:

class Soupl {
private Soupl() {}
// (1) Allow creation via static method:
public static Soupl makeSoup() {
return new Soupl();
}

}

class Soup2 {
private Soup2() {}
// (2) Create a static object and return a reference
// upon request.(The "Singleton" pattern):
private static Soup2 psl = new Soup2();
public static Soup2 access() {
return psl;
}

public void f() {}
}

// Only one public class allowed per file:
public class Lunch {
void testPrivate() {
// Can’t do this! Private constructor:
//' Soupl soup = new Soupl();
}
void testStatic() {
Soupl soup = Soupl.makeSoup();
}

void testSingleton() {
Soup2.access().T();
}

Yy /i~

Up to now, most of the methods have been returning either void or a primitive type, so the
definition:

public static Soupl makeSoup() {
return new Soupl();

}

might look a little confusing at first. The word Soup1 before the method name (makeSoup)
tells what the method returns. So far in this book, this has usually been void, which means it
returns nothing. But you can also return a reference to an object, which is what happens
here. This method returns a reference to an object of class Soupl.

6 Actually, an inner class can be private or protected, but that’s a special case. These will be introduced in the Inner
Classes chapter.

160 Thinking in Java Bruce Eckel

The classes Soupl and Soup2 show how to prevent direct creation of a class by making all
the constructors private. Remember that if you don’t explicitly create at least one
constructor, the default constructor (a constructor with no arguments) will be created for
you. By writing the default constructor, it won’t be created automatically. By making it
private, no one can create an object of that class. But now how does anyone use this class?
The preceding example shows two options. In Soupl, a static method is created that creates
a new Soupl and returns a reference to it. This can be useful if you want to do some extra
operations on the Soupl before returning it, or if you want to keep count of how many
Soupl objects to create (perhaps to restrict their population).

Soup?2 uses what’s called a design pattern, which is covered in Thinking in Patterns (with
Java) at www.MindView.net. This particular pattern is called a Singleton, because it allows
only a single object to ever be created. The object of class Soup2 is created as a static
private member of Soup2, so there’s one and only one, and you can’t get at it except
through the public method access().

As previously mentioned, if you don’t put an access specifier for class access, it defaults to
package access. This means that an object of that class can be created by any other class in
the package, but not outside the package. (Remember, all the files within the same directory
that don’t have explicit package declarations are implicitly part of the default package for
that directory.) However, if a static member of that class is public, the client programmer
can still access that static member even though they cannot create an object of that class.

Exercise 8: (4) Following the form of the example Lunch.java, create a class called
ConnectionManager that manages a fixed array of Connection objects. The client
programmer must not be able to explicitly create Connection objects, but can only get them
via a static method in ConnectionManager. When the ConnectionManager runs out of
objects, it returns a null reference. Test the classes in main().

Exercise 9: (2) Create the following file in the access/local directory (presumably in
your CLASSPATH):

// access/local/PackagedClass.java
package access.local;

class PackagedClass {
public PackagedClass() {
System.out.println("Creating a packaged class");
}
}

Then create the following file in a directory other than access/local:

// access/foreign/Foreign.java
package access.foreign;
import access.local.*;

public class Foreign {
public static void main(String[] args) {
PackagedClass pc = new PackagedClass();
}

}

Explain why the compiler generates an error. Would making the Foreign class part of the
access.local package change anything?

Access Control 161

Summary

In any relationship it’s important to have boundaries that are respected by all parties
involved. When you create a library, you establish a relationship with the user of that
library—the client programmer—who is another programmer, but one using your library to
build an application or a bigger library.

Without rules, client programmers can do anything they want with all the members of a
class, even if you might prefer they don’t directly manipulate some of the members.
Everything’s naked to the world.

This chapter looked at how classes are built to form libraries: first, the way a group of classes
is packaged within a library, and second, the way the class controls access to its members.

It is estimated that a C programming project begins to break down somewhere between 50K
and 100K lines of code because C has a single namespace, and names begin to collide,
causing extra management overhead. In Java, the package keyword, the package naming
scheme, and the import keyword give you complete control over names, so the issue of
name collision is easily avoided.

There are two reasons for controlling access to members. The first is to keep users’ hands off
portions that they shouldn’t touch. These pieces are necessary for the internal operations of
the class, but not part of the interface that the client programmer needs. So making methods
and fields private is a service to client programmers, because they can easily see what’s
important to them and what they can ignore. It simplifies their understanding of the class.

The second and most important reason for access control is to allow the library designer to
change the internal workings of the class without worrying about how it will affect the client
programmer. You might, for example, build a class one way at first, and then discover that
restructuring your code will provide much greater speed. If the interface and implementation
are clearly separated and protected, you can accomplish this without forcing client
programmers to rewrite their code. Access control ensures that no client programmer
becomes dependent on any part of the underlying implementation of a class.

When you have the ability to change the underlying implementation, you not only have the
freedom to improve your design, you also have the freedom to make mistakes. No matter
how carefully you plan and design, you'll make mistakes. Knowing that it’s relatively safe to
make these mistakes means you’ll be more experimental, you'll learn more quickly, and you’ll
finish your project sooner.

The public interface to a class is what the user does see, so that is the most important part of
the class to get “right” during analysis and design. Even that allows you some leeway for
change. If you don’t get the interface right the first time, you can add more methods, as long
as you don’t remove any that client programmers have already used in their code.

Notice that access control focuses on a relationship—and a kind of communication—between
a library creator and the external clients of that library. There are many situations where this
is not the case. For example, you are writing all the code yourself, or you are working in close
quarters with a small team and everything goes into the same package. These situations have
a different kind of communication, and rigid adherence to access rules may not be optimal.
Default (package) access may be just fine.

162

Thinking in Java Bruce Eckel

Solutions to selected exercises can be found in the electronic document The Thinking in Java Annotated Solution Guide,
available for sale from www.MindView.net.

Access Control 163

Reusing Classes

One of the most compelling features about Java is code reuse. But to
be revolutionary, you've got to be able to do a lot more than copy code
and change it.

That’s the approach used in procedural languages like C, and it hasn’t worked very well. Like
everything in Java, the solution revolves around the class. You reuse code by creating new
classes, but instead of creating them from scratch, you use existing classes that someone has
already built and debugged.

The trick is to use the classes without soiling the existing code. In this chapter you’ll see two
ways to accomplish this. The first is quite straightforward: you simply create objects of your
existing class inside the new class. This is called composition, because the new class is
composed of objects of existing classes. You're simply reusing the functionality of the code,
not its form.

The second approach is more subtle. It creates a new class as a type of an existing class. You
literally take the form of the existing class and add code to it without modifying the existing
class. This technique is called inheritance, and the compiler does most of the work.
Inheritance is one of the cornerstones of object-oriented programming, and has additional
implications that will be explored in the Polymorphism chapter.

It turns out that much of the syntax and behavior are similar for both composition and
inheritance (which makes sense because they are both ways of making new types from
existing types). In this chapter, you’ll learn about these code reuse mechanisms.

Composition syntax

Composition has been used quite frequently up to this point in the book. You simply place
object references inside new classes. For example, suppose you’d like an object that holds
several String objects, a couple of primitives, and an object of another class. For the non-
primitive objects, you put references inside your new class, but you define the primitives
directly:

//: reusing/SprinklerSystem.java
// Composition for code reuse.

class WaterSource {
private String s;
WaterSource() {
System.out.println("WaterSource()");
s = "Constructed";

}
public String toString() { return s; }
}

public class SprinklerSystem {
private String valvel, valve2, valve3, valve4;
private WaterSource source = new WaterSource();
private int 1i;
private float f;
public String toString() {
return

"valvel = " + valvel + " " +

"valve2 = " + valve2 + " " +

"valve3 = " + valve3 + " " +

"valved = " + valved + "\n" +

n .I = n + .I + n n + n f = n + f + n n +
"source = " + source;

}
public static void main(String[] args) {
SprinklerSystem sprinklers = new SprinklerSystem();
System.out.println(sprinklers);
}
} /* OQutput:
WaterSource()
valvel = null valve2
i=0°f =0.0 source
/1117

null valve3 = null valve4 = null
Constructed

One of the methods defined in both classes is special: toString(). Every non-primitive
object has a toString() method, and it’s called in special situations when the compiler
wants a String but it has an object. So in the expression in SprinklerSystem.toString():

"source = " + source;

the compiler sees you trying to add a String object ("source = ") to a WaterSource.
Because you can only “add” a String to another String, it says “I'll turn source into a
String by calling toString()!” After doing this it can combine the two Strings and pass the
resulting String to System.out.printin() (or equivalently, this book’s print() and
printnb() static methods). Any time you want to allow this behavior with a class you
create, you need only write a toString() method.

Primitives that are fields in a class are automatically initialized to zero, as noted in the
Everything Is an Object chapter. But the object references are initialized to null, and if you
try to call methods for any of them, you’ll get an exception-a runtime error. Conveniently,
you can still print a null reference without throwing an exception.

It makes sense that the compiler doesn’t just create a default object for every reference,
because that would incur unnecessary overhead in many cases. If you want the references
initialized, you can do it:

1. At the point the objects are defined. This means that they’ll always be initialized
before the constructor is called.

2. In the constructor for that class.

3. Right before you actually need to use the object. This is often called lazy
initialization. It can reduce overhead in situations where object creation is expensive
and the object doesn’t need to be created every time.

4. Using instance initialization.

All four approaches are shown here:

//: reusing/Bath.java
// Constructor initialization with composition.
import static net.mindview.util.Print.*;

class Soap {
private String s;

166

Thinking in Java Bruce Eckel

Soap() {
print("Soap()");
s = "Constructed";
}
public String toString() { return s; }

}

public class Bath {
private String // Initializing at point of definition:

sl = "Happy",
s2 = "Happy",
s3, s4;

private Soap castille;

private int 1i;

private float toy;

public Bath() {
print("Inside Bath()");
s3 = "Joy";
toy = 3.14f;
castille = new Soap();

}

// Instance initialization:

{1i=47;}

public String toString() {
if(s4 == null) // Delayed initialization:

s4 = "Joy";
return
"Sl = n + Sl + ll\nll +
"52 = n + 52 + ll\nll +
"s3 =" + s3 + "\n" +
"s4 = " + s4 + "\n" +
ll.i = n + .I + ll\nll +
lltoy = n + toy + ll\nll +
"castille = " + castille;

}

public static void main(String[] args) {
Bath b = new Bath();
print(b);
}
} /* Qutput:
Inside Bath()
Soap()
sl Happy
s2 Happy
s3 Joy
s4 Joy
i = 47
toy = 3.14
castille = Constructed
1]/~

Note that in the Bath constructor, a statement is executed before any of the initializations
take place. When you don’t initialize at the point of definition, there’s still no guarantee that
you’ll perform any initialization before you send a message to an object reference—except for
the inevitable run-time exception.

When toString() is called it fills in s4 so that all the fields are properly initialized by the
time they are used.

Exercise 1: (2) Create a simple class. Inside a second class, define a reference to an object
of the first class. Use lazy initialization to instantiate this object.

Reusing Classes 167

Inheritance syntax

Inheritance is an integral part of Java (and all OOP languages). It turns out that you're
always doing inheritance when you create a class, because unless you explicitly inherit from
some other class, you implicitly inherit from Java’s standard root class Object.

The syntax for composition is obvious, but to perform inheritance there’s a distinctly
different form. When you inherit, you say “This new class is like that old class.” You state this
in code before the opening brace of the class body, using the keyword extends followed by
the name of the base class. When you do this, you automatically get all the fields and
methods in the base class. Here’s an example:

//: reusing/Detergent.java
// Inheritance syntax & properties.
import static net.mindview.util.Print.*;

class Cleanser {
private String s = "Cleanser";
public void append(String a) { s += a; }
public void dilute() { append(" dilute()");
public void apply() { append(" apply()"); }
public void scrub() { append(" scrub()"); }
public String toString() { return s; }
public static void main(String[] args) {
Cleanser x = new Cleanser();
x.dilute(); x.apply(); x.scrub();
print(x);

}

}
}

public class Detergent extends Cleanser {
// Change a method:
public void scrub() {
append (" Detergent.scrub()");
super.scrub(); // Call base-class version

}
// Add methods to the interface:
public void foam() { append(" foam()"); }
// Test the new class:
public static void main(String[] args) {
Detergent x = new Detergent();
x.dilute();
x.apply () ;
X.scrub();
x.foam() ;
print(x);
print("Testing base class:");
Cleanser.main(args);
}
} /* OQutput:
Cleanser dilute() apply() Detergent.scrub() scrub() foam()
Testing base class:
Cleanser dilute() apply() scrub()
11/~

This demonstrates a number of features. First, in the Cleanser append() method, Strings
are concatenated to s using the += operator, which is one of the operators (along with ‘+’)
that the Java designers “overloaded” to work with Strings.

168 Thinking in Java Bruce Eckel

Second, both Cleanser and Detergent contain a main() method. You can create a
main() for each one of your classes; this technique of putting a main() in each class allows
easy testing for each class. And you don’t need to remove the main() when you're finished;
you can leave it in for later testing.

Even if you have a lot of classes in a program, only the main() for the class invoked on the
command line will be called. So in this case, when you say java Detergent,
Detergent.main() will be called. But you can also say java Cleanser to invoke
Cleanser.main(), even though Cleanser is not a public class. Even if a class has package
access, a public main() is accessible.

Here, you can see that Detergent.main() calls Cleanser.main() explicitly, passing it the
same arguments from the command line (however, you could pass it any String array).

It’s important that all of the methods in Cleanser are public. Remember that if you leave
off any access specifier, the member defaults to package access, which allows access only to
package members. Thus, within this package, anyone could use those methods if there were
no access specifier. Detergent would have no trouble, for example. However, if a class from
some other package were to inherit from Cleanser, it could access only public members. So
to allow for inheritance, as a general rule make all fields private and all methods public.
(protected members also allow access by derived classes; you'll learn about this later.) Of
course, in particular cases you must make adjustments, but this is a useful guideline.

Cleanser has a set of methods in its interface: append(), dilute(), apply(), scrub(),
and toString(). Because Detergent is derived from Cleanser (via the extends keyword),
it automatically gets all these methods in its interface, even though you don’t see them all
explicitly defined in Detergent. You can think of inheritance, then, as reusing the class.

As seen in scrub(), it’s possible to take a method that’s been defined in the base class and
modify it. In this case, you might want to call the method from the base class inside the new
version. But inside scrub(), you cannot simply call scrub(), since that would produce a
recursive call, which isn’t what you want. To solve this problem, Java has the keyword super
that refers to the “superclass” that the current class inherits. Thus the expression
super.scrub() calls the base-class version of the method scrub().

When inheriting you're not restricted to using the methods of the base class. You can also
add new methods to the derived class exactly the way you put any method in a class: Just
define it. The method foam() is an example of this.

In Detergent.main() you can see that for a Detergent object, you can call all the methods
that are available in Cleanser as well as in Detergent (i.e., foam()).

Exercise 2: (2) Inherit a new class from class Detergent. Override scrub() and add a
new method called sterilize().

Initializing the base class

Since there are now two classes involved—the base class and the derived class—instead of
just one, it can be a bit confusing to try to imagine the resulting object produced by a derived
class. From the outside, it looks like the new class has the same interface as the base class
and maybe some additional methods and fields. But inheritance doesn’t just copy the
interface of the base class. When you create an object of the derived class, it contains within it
a subobject of the base class. This subobject is the same as if you had created an object of the
base class by itself. It’s just that from the outside, the subobject of the base class is wrapped
within the derived-class object.

Reusing Classes 169

Of course, it’s essential that the base-class subobject be initialized correctly, and there’s only
one way to guarantee this: Perform the initialization in the constructor by calling the base-
class constructor, which has all the appropriate knowledge and privileges to perform the
base-class initialization. Java automatically inserts calls to the base-class constructor in the
derived-class constructor. The following example shows this working with three levels of
inheritance:

//: reusing/Cartoon.java
// Constructor calls during inheritance.
import static net.mindview.util.Print.*;

class Art {
Art() { print("Art constructor"); }
}

class Drawing extends Art {
Drawing() { print("Drawing constructor"); }

}

public class Cartoon extends Drawing {
public Cartoon() { print("Cartoon constructor"); }
public static void main(String[] args) {
Cartoon x = new Cartoon();

}
} /* Qutput:
Art constructor
Drawing constructor
Cartoon constructor
/1]~

You can see that the construction happens from the base “outward,” so the base class is
initialized before the derived-class constructors can access it. Even if you don’t create a
constructor for Cartoon(), the compiler will synthesize a default constructor for you that
calls the base class constructor.

Exercise 3: (2) Prove the previous sentence.

Exercise 4: (2) Prove that the base-class constructors are (a) always called and (b) called
before derived-class constructors.

Exercise 5: (1) Create two classes, A and B, with default constructors (empty argument
lists) that announce themselves. Inherit a new class called C from A, and create a member of
class B inside C. Do not create a constructor for C. Create an object of class C and observe
the results.

Constructors with arguments

The preceding example has default constructors; that is, they don’t have any arguments. It’s
easy for the compiler to call these because there’s no question about what arguments to pass.
If your class doesn’t have default arguments, or if you want to call a base-class constructor
that has an argument, you must explicitly write the calls to the base-class constructor using
the super keyword and the appropriate argument list:

//: reusing/Chess.java
// Inheritance, constructors and arguments.
import static net.mindview.util.Print.*;

class Game {
Game(int 1) {

170

Thinking in Java Bruce Eckel

print("Game constructor");
}
}

class BoardGame extends Game {
BoardGame(int i) {
super (i) ;
print("BoardGame constructor");
}
}

public class Chess extends BoardGame {
Chess () {
super(11);
print("Chess constructor");
}
public static void main(String[] args) {
Chess x = new Chess();
}
} /* OQutput:
Game constructor
BoardGame constructor
Chess constructor
11/~

If you don’t call the base-class constructor in BoardGame(), the compiler will complain
that it can’t find a constructor of the form Game(). In addition, the call to the base-class
constructor must be the first thing you do in the derived-class constructor. (The compiler will
remind you if you get it wrong.)

Exercise 6: (1) Using Chess.java, prove the statements in the previous paragraph.

Exercise 7: (1) Modify Exercise 5 so that A and B have constructors with arguments
instead of default constructors. Write a constructor for C and perform all initialization within
C’s constructor.

EXxercise 8: (1) Create a base class with only a non-default constructor, and a derived
class with both a default (no-arg) and non-default constructor. In the derived-class
constructors, call the base-class constructor.

Exercise 9: (2) Create a class called Root that contains an instance of each of the classes
(that you also create) named Componentl, Component2, and Component3. Derive a
class Stem from Root that also contains an instance of each “component.” All classes should
have default constructors that print a message about that class.

Exercise 10: (1) Modify the previous exercise so that each class only has non-default
constructors.

Delegation

A third relationship, which is not directly supported by Java, is called delegation. This is
midway between inheritance and composition, because you place a member object in the
class you're building (like composition), but at the same time you expose all the methods
from the member object in your new class (like inheritance). For example, a spaceship needs
a control module:

\ //: reusing/SpaceShipControls.java

Reusing Classes 171

public class SpaceShipControls {
void up(int velocity) {}
void down(int velocity) {}
void left(int velocity) {}
void right(int velocity) {}
void forward(int velocity) {}
void back(int velocity) {}
void turboBoost() {}

Yy /1~

One way to build a spaceship is to use inheritance:

//: reusing/SpaceShip.java

public class SpaceShip extends SpaceShipControls {
private String name;
public SpaceShip(String name) { this.name = name; }
public String toString() { return name; }
public static void main(String[] args) {
SpaceShip protector = new SpaceShip("NSEA Protector");
protector.forward(100);

}
Y/~

However, a SpaceShip isn’t really “a type of” SpaceShipControls, even if, for example,
you “tell” a SpaceShip to go forward(). It’s more accurate to say that a SpaceShip
contains SpaceShipControls, and at the same time all the methods in
SpaceShipControls are exposed in a SpaceShip. Delegation solves the dilemma:

//: reusing/SpaceShipDelegation.java

public class SpaceShipDelegation {
private String name;
private SpaceShipControls controls =
new SpaceShipControls();
public SpaceShipDelegation(String name) {
this.name = name;
}

// Delegated methods:

public void back(int velocity) {
controls.back(velocity);

}

public void down(int velocity) {
controls.down(velocity);

}

public void forward(int velocity) {
controls.forward(velocity);

}

public void left(int velocity) {
controls.left(velocity);
}

public void right(int velocity) {
controls.right(velocity);

}
public void turboBoost() {

controls.turboBoost();
}

public void up(int velocity) {
controls.up(velocity);
}

public static void main(String[] args) {

172 Thinking in Java Bruce Eckel

SpaceShipDelegation protector =
new SpaceShipDelegation("NSEA Protector");
protector.forward(100);

}
Yy I/~

You can see how the methods are forwarded to the underlying controls object, and the
interface is thus the same as it is with inheritance. However, you have more control with
delegation because you can choose to provide only a subset of the methods in the member
object.

Although the Java language doesn’t support delegation, development tools often do. The
above example, for instance, was automatically generated using the JetBrains Idea IDE.

Exercise 11: (3) Modify Detergent.java so that it uses delegation.

Combining composition
and inheritance

It is very common to use composition and inheritance together. The following example shows
the creation of a more complex class, using both inheritance and composition, along with the
necessary constructor initialization:

//: reusing/PlaceSetting.java
// Combining composition & inheritance.
import static net.mindview.util.Print.*;

class Plate {
Plate(int i) {
print("Plate constructor");
}
}

class DinnerPlate extends Plate {
DinnerPlate(int i) {
super (i) ;
print("DinnerPlate constructor");
}
}

class Utensil {
Utensil(int i) {
print("Utensil constructor");
}
}

class Spoon extends Utensil {
Spoon(int 1) {
super(i);
print("Spoon constructor");
}
}

class Fork extends Utensil {
Fork(int i) {
super(i);
print("Fork constructor");

}

Reusing Classes 173

}

class Knife extends Utensil {
Knife(int i) {
super (i) ;
print("Knife constructor");
}
}

// A cultural way of doing something:
class Custom {
Custom(int i) {
print("Custom constructor");
}
}

public class PlaceSetting extends Custom {
private Spoon sp;
private Fork frk;
private Knife kn;
private DinnerPlate pl;
public PlaceSetting(int i) {
super(i + 1);
sp = new Spoon(i + 2);
frk = new Fork(i + 3);
kn = new Knife(i + 4);
pl = new DinnerPlate(i + 5);
print("PlaceSetting constructor");
}
public static void main(String[] args) {
PlaceSetting x = new PlaceSetting(9);
}
} /* Qutput:
Custom constructor
Utensil constructor
Spoon constructor
Utensil constructor
Fork constructor
Utensil constructor
Knife constructor
Plate constructor
DinnerPlate constructor
PlaceSetting constructor
11/~

Although the compiler forces you to initialize the base classes, and requires that you do it
right at the beginning of the constructor, it doesn’t watch over you to make sure that you
initialize the member objects, so you must remember to pay attention to that.

It’s rather amazing how cleanly the classes are separated. You don’t even need the source
code for the methods in order to reuse the code. At most, you just import a package. (This is
true for both inheritance and composition.)

Guaranteeing proper cleanup

Java doesn’t have the C++ concept of a destructor, a method that is automatically called
when an object is destroyed. The reason is probably that in Java, the practice is simply to
forget about objects rather than to destroy them, allowing the garbage collector to reclaim the
memory as necessary.

174

Thinking in Java Bruce Eckel

Often this is fine, but there are times when your class might perform some activities during
its lifetime that require cleanup. As mentioned in the Initialization & Cleanup chapter, you
can’t know when the garbage collector will be called, or if it will be called. So if you want
something cleaned up for a class, you must explicitly write a special method to do it, and
make sure that the client programmer knows that they must call this method. On top of
this—as described in the Error Handling with Exceptions chapter—you must guard against
an exception by putting such cleanup in a finally clause.

Consider an example of a computer-aided design system that draws pictures on the screen:

//: reusing/CADSystem.java

// Ensuring proper cleanup.

package reusing;

import static net.mindview.util.Print.*;

class Shape {
Shape(int i) { print("Shape constructor"); }
void dispose() { print("Shape dispose"); }

}

class Circle extends Shape {
Circle(int i) {
super (i) ;
print("Drawing Circle");
}
void dispose() {
print("Erasing Circle");
super.dispose();
}
}

class Triangle extends Shape {
Triangle(int i) {
super (i) ;
print("Drawing Triangle");
}
void dispose() {
print("Erasing Triangle");
super.dispose();
}
}

class Line extends Shape {
private int start, end;
Line(int start, int end) {
super(start);
this.start = start;
this.end = end;

print("Drawing Line: " + start + ", " + end);
}
void dispose() {
print("Erasing Line: " + start + ", " + end);
super.dispose();
}

}

public class CADSystem extends Shape {
private Circle c;
private Triangle t;
private Line[] 1lines = new Line[3];
public CADSystem(int i) {
super(i + 1);

Reusing Classes 175

for(int j = 0; j < lines.length; j++)
lines[j] = new Line(j, j*j);
c = new Circle(l);
t = new Triangle(l);
print("Combined constructor");
}
public void dispose() {
print ("CADSystem.dispose()");
// The order of cleanup is the reverse
// of the order of initialization:
t.dispose();
c.dispose();
for(int i = lines.length - 1; i >= 0; i--)
lines[i].dispose();
super.dispose();
}
public static void main(String[] args) {
CADSystem x = new CADSystem(47);
try {
// Code and exception handling...
} finally {
x.dispose();
}
}
} /* Qutput:
Shape constructor
Shape constructor
Drawing Line: 0, 0
Shape constructor
Drawing Line: 1, 1
Shape constructor
Drawing Line: 2, 4
Shape constructor
Drawing Circle
Shape constructor
Drawing Triangle
Combined constructor
CADSystem.dispose()
Erasing Triangle
Shape dispose
Erasing Circle
Shape dispose
Erasing Line: 2, 4
Shape dispose
Erasing Line: 1, 1
Shape dispose
Erasing Line: 0, ©
Shape dispose
Shape dispose
/1]~

Everything in this system is some kind of Shape (which is itself a kind of Object, since it’s
implicitly inherited from the root class). Each class overrides Shape’s dispose() method in
addition to calling the base-class version of that method using super. The specific Shape
classes—Circle, Triangle, and Line—all have constructors that “draw,” although any
method called during the lifetime of the object could be responsible for doing something that
needs cleanup. Each class has its own dispose() method to restore non-memory things
back to the way they were before the object existed.

In main(), you can see two keywords that are new, and won’t be explained until the Error
Handling with Exceptions chapter: try and finally. The try keyword indicates that the block
that follows (delimited by curly braces) is a guarded region, which means that it is given

176 Thinking in Java Bruce Eckel

special treatment. One of these special treatments is that the code in the finally clause
following this guarded region is always executed, no matter how the try block exits. (With
exception handling, it’s possible to leave a try block in a number of non-ordinary ways.)
Here, the finally clause is saying “always call dispose() for X, no matter what happens.”

Note that in your cleanup method, you must also pay attention to the calling order for the
base-class and member-object cleanup methods in case one subobject depends on another.
In general, you should follow the same form that is imposed by a C++ compiler on its
destructors: First perform all of the cleanup work specific to your class, in the reverse order
of creation. (In general, this requires that base-class elements still be viable.) Then call the
base-class cleanup method, as demonstrated here.

There can be many cases in which the cleanup issue is not a problem; you just let the garbage
collector do the work. But when you must do it explicitly, diligence and attention are
required, because there’s not much you can rely on when it comes to garbage collection. The
garbage collector might never be called. If it is, it can reclaim objects in any order it wants.
You can’t rely on garbage collection for anything but memory reclamation. If you want
cleanup to take place, make your own cleanup methods and don’t use on finalize().

Exercise 12: (3) Add a proper hierarchy of dispose() methods to all the classes in
Exercise 9.

Name hiding

If a Java base class has a method name that’s overloaded several times, redefining that
method name in the derived class will not hide any of the base-class versions (unlike C++).
Thus overloading works regardless of whether the method was defined at this level or in a
base class:

//: reusing/Hide.java

// Overloading a base-class method name in a derived
// class does not hide the base-class versions.
import static net.mindview.util.Print.*;

class Homer {
char doh(char c¢) {
print("doh(char)");
return ‘d’;
}
float doh(float f) {
print("doh(float)");
return 1.0f;
}
}

class Milhouse {}

class Bart extends Homer {
void doh(Milhouse m) {
print("doh(Milhouse)");
}
}

public class Hide {
public static void main(String[] args) {
Bart b = new Bart();
b.doh(1);
b.doh(‘x’);
b.doh(1.0f);

Reusing Classes 177

b.doh(new Milhouse());

}
} /* Output:
doh(float)
doh(char)
doh(float)
doh(Milhouse)
1]/~

You can see that all the overloaded methods of Homer are available in Bart, even though
Bart introduces a new overloaded method (in C++ doing this would hide the base-class
methods). As you’ll see in the next chapter, it’s far more common to override methods of the
same name, using exactly the same signature and return type as in the base class. It can be
confusing otherwise (which is why C++ disallows it—to prevent you from making what is
probably a mistake).

Java SE5 has added the @Override annotation, which is not a keyword but can be used as if
it were. When you mean to override a method, you can choose to add this annotation and the
compiler will produce an error message if you accidentally overload instead of overriding.

//: reusing/Lisa.java
// {CompileTimeError} (Won’t compile)

class Lisa extends Homer {
@Override void doh(Milhouse m) {
System.out.println("doh(Milhouse)");

}
Yy I/~

The {CompileTimeError} tag excludes the file from this book’s Ant build, but if you
compile it by hand you’ll see the error message:

method does not override a method from its superclass

The @Override annotation will thus prevent you from accidentally overloading when you
don’t mean to.

Exercise 13: (2) Create a class with a method that is overloaded three times. Inherit a
new class, add a new overloading of the method, and show that all four methods are available
in the derived class.

Choosing composition

VS. iInheritance

Both composition and inheritance allow you to place subobjects inside your new class
(composition explicitly does this—with inheritance it’s implicit). You might wonder about the
difference between the two, and when to choose one over the other.

Composition is generally used when you want the features of an existing class inside your
new class, but not its interface. That is, you embed an object so that you can use it to
implement features in your new class, but the user of your new class sees the interface you've
defined for the new class rather than the interface from the embedded object. For this effect,
you embed private objects of existing classes inside your new class.

Sometimes it makes sense to allow the class user to directly access the composition of your
new class; that is, to make the member objects public. The member objects use

178

Thinking in Java Bruce Eckel

implementation hiding themselves, so this is a safe thing to do. When the user knows you’re

assembling a bunch of parts, it makes the interface easier to understand. A car object is a

good example:

//: reusing/Car.java

class Engine {
public void start() {}
public void rev() {}
public void stop() {}
}

class Wheel {

}

class Window ({

public void rolldown()

}

class Door {
public Window window =
public void open() {}
public void close() {}
}

public class Car {
public Engine engine
public Wheel[] wheel
public Door
left = new Door (),
right = new Door();
public Car() {

}

Car car = new Car();

}
Yy I~

public void rollup() {}

for(int i = 0; i < 4;
wheel[i] = new Wheel();

// Composition with public objects.

public void inflate(int psi) {}

{}

new Window() ;

new Engine();
new Wheel[4];

// 2-door

i++)

public static void main(String[] args) {

car.left.window.rollup();
car.wheel[Q] .inflate(72);

Because in this case the composition of a car is part of the analysis of the problem (and not

simply part of the underlying design), making the members public assists the client
programmer’s understanding of how to use the class and requires less code complexity for

the creator of the class. However, keep in mind that this is a special case, and that in general

you should make fields private.

When you inherit, you take an existing class and make a special version of it. In general, this

means that you're taking a general-purpose class and specializing it for a particular need.

With a little thought, you’ll see that it would make no sense to compose a car using a vehicle
object—a car doesn’t contain a vehicle, it is a vehicle. The is-a relationship is expressed with

inheritance, and the has-a relationship is expressed with composition.

Exercise 14: (1) In Car.java add a service() method to Engine and call this method

in main().

Reusing Classes

179

protected

Now that you’ve been introduced to inheritance, the keyword protected finally has
meaning. In an ideal world, the private keyword would be enough. In real projects, there are
times when you want to make something hidden from the world at large and yet allow access
for members of derived classes.

The protected keyword is a nod to pragmatism. It says “This is private as far as the class
user is concerned, but available to anyone who inherits from this class or anyone else in the
same package.” (In Java, protected also provides package access.)

Although it’s possible to create protected fields, the best approach is to leave the fields
private; you should always preserve your right to change the underlying implementation.
You can then allow controlled access to inheritors of your class through protected methods:

//: reusing/0Orc.java
// The protected keyword.
import static net.mindview.util.Print.*;

class Villain {
private String name;
protected void set(String nm) { name = nm; }
public Villain(String name) { this.name = name; }
public String toString() {
return "I’m a Villain and my name is " + name;
}

}

public class Orc extends Villain {

private int orcNumber;

public Orc(String name, int orcNumber) {
super (name) ;
this.orcNumber = orcNumber;

}

public void change(String name, int orcNumber) {
set(name); // Available because it’s protected
this.orcNumber = orcNumber;

}
public String toString() {

return "Orc " + orcNumber + ": " + super.toString();
}

public static void main(String[] args) {
Orc orc = new Orc("Limburger", 12);
print(orc);
orc.change("Bob", 19);
print(orc);
}
} /* Output:
Orc 12: I'm a Villain and my name is Limburger
Orc 19: I'm a Villain and my name 1is Bob
11/~

You can see that change() has access to set() because it’s protected. Also note the way
that Orc’s toString() method is defined in terms of the base-class version of toString().

Exercise 15: (2) Create a class inside a package. Your class should contain a protected
method. Outside of the package, try to call the protected method and explain the results.
Now inherit from your class and call the protected method from inside a method of your
derived class.

180 Thinking in Java Bruce Eckel

Upcasting

The most important aspect of inheritance is not that it provides methods for the new class.
It’s the relationship expressed between the new class and the base class. This relationship can
be summarized by saying, “The new class is a type of the existing class.”

This description is not just a fanciful way of explaining inheritance—it’s supported directly by
the language. As an example, consider a base class called Instrument that represents
musical instruments, and a derived class called Wind. Because inheritance means that all of
the methods in the base class are also available in the derived class, any message you can
send to the base class can also be sent to the derived class. If the Instrument class has a
play() method, so will Wind instruments. This means we can accurately say that a Wind
object is also a type of Instrument. The following example shows how the compiler
supports this notion:

//: reusing/Wind.java
// Inheritance & upcasting.

class Instrument {
public void play() {}
static void tune(Instrument i) {
/! ...
i.play();
}
}

// Wind objects are instruments
// because they have the same interface:
public class Wind extends Instrument ({
public static void main(String[] args) {
Wind flute = new Wind();
Instrument.tune(flute); // Upcasting

}
Yy I/~

What’s interesting in this example is the tune() method, which accepts an Instrument
reference. However, in Wind.main() the tune() method is called by giving it a Wind
reference. Given that Java is particular about type checking, it seems strange that a method
that accepts one type will readily accept another type, until you realize that a Wind object is
also an Instrument object, and there’s no method that tune() could call for an
Instrument that isn’t also in Wind. Inside tune(), the code works for Instrument and
anything derived from Instrument, and the act of converting a Wind reference into an
Instrument reference is called upcasting.

Why “upcasting”?

The term is based on the way that class inheritance diagrams have traditionally been drawn:
with the root at the top of the page, growing downward. (Of course, you can draw your
diagrams any way you find helpful.) The inheritance diagram for Wind.java is then:

Reusing Classes 181

Instrument

1

Wird

Casting from a derived type to a base type moves up on the inheritance diagram, so it’s
commonly referred to as upcasting. Upcasting is always safe because you're going from a
more specific type to a more general type. That is, the derived class is a superset of the base
class. It might contain more methods than the base class, but it must contain at least the
methods in the base class. The only thing that can occur to the class interface during the
upcast is that it can lose methods, not gain them. This is why the compiler allows upcasting
without any explicit casts or other special notation.

You can also perform the reverse of upcasting, called downcasting, but this involves a
dilemma that will be examined further in the next chapter, and in the Type Information
chapter.

Composition vs. inheritance revisited

In object-oriented programming, the most likely way that you’ll create and use code is by
simply packaging data and methods together into a class, and using objects of that class.
You’ll also use existing classes to build new classes with composition. Less frequently, you’ll
use inheritance. So although inheritance gets a lot of emphasis while learning OOP, it doesn’t
mean that you should use it everywhere you possibly can. On the contrary, you should use it
sparingly, only when it’s clear that inheritance is useful. One of the clearest ways to
determine whether you should use composition or inheritance is to ask whether you’ll ever
need to upcast from your new class to the base class. If you must upcast, then inheritance is
necessary, but if you don’t need to upcast, then you should look closely at whether you need
inheritance. The Polymorphism chapter provides one of the most compelling reasons for
upcasting, but if you remember to ask “Do I need to upcast?” you’ll have a good tool for
deciding between composition and inheritance.

Exercise 16: (2) Create a class called Amphibian. From this, inherit a class called
Frog. Put appropriate methods in the base class. In main(), create a Frog and upcast it to
Amphibian and demonstrate that all the methods still work.

Exercise 17: (1) Modify Exercise 16 so that Frog overrides the method definitions from
the base class (provides new definitions using the same method signatures). Note what
happens in main().

The final keyword

Java’s final keyword has slightly different meanings depending on the context, but in
general it says “This cannot be changed.” You might want to prevent changes for two reasons:
design or efficiency. Because these two reasons are quite different, it’s possible to misuse the
final keyword.

The following sections discuss the three places where final can be used: for data, methods,
and classes.

182 Thinking in Java Bruce Eckel

final data

Many programming languages have a way to tell the compiler that a piece of data is
“constant.” A constant is useful for two reasons:

1. It can be a compile-time constant that won’t ever change.

2. It can be a value initialized at run time that you don’t want changed.

In the case of a compile-time constant, the compiler is allowed to “fold” the constant value
into any calculations in which it’s used; that is, the calculation can be performed at compile
time, eliminating some run-time overhead. In Java, these sorts of constants must be
primitives and are expressed with the final keyword. A value must be given at the time of
definition of such a constant.

A field that is both static and final has only one piece of storage that cannot be changed.

When final is used with object references rather than primitives, the meaning can be
confusing. With a primitive, final makes the value a constant, but with an object reference,
final makes the reference a constant. Once the reference is initialized to an object, it can
never be changed to point to another object. However, the object itself can be modified; Java
does not provide a way to make any arbitrary object a constant. (You can, however, write
your class so that objects have the effect of being constant.) This restriction includes arrays,
which are also objects.

Here’s an example that demonstrates final fields. Note that by convention, fields that are
both static and final (that is, compile-time constants) are capitalized and use underscores
to separate words.

//: reusing/FinalData.java

// The effect of final on fields.

import java.util.*;

import static net.mindview.util.Print.*;

class Value {

int i; // Package access

public Value(int i) { this.i = 1; }
}

public class FinalData {
private static Random rand = new Random(47);
private String id;
public FinalData(String id) { this.id = id; }
// Can be compile-time constants:
private final int valueOne = 9;
private static final int VALUE_TWO = 99;
// Typical public constant:
public static final int VALUE THREE = 39;
// Cannot be compile-time constants:
private final int i4 = rand.nextInt(20);
static final int INT_5 = rand.nextInt(20);
private Value vl = new Value(ll);
private final Value v2 = new Value(22);
private static final Value VAL_3 = new Value(33);
// Arrays:
private final int[] a = {1, 2, 3, 4, 5, 6 };
public String toString() {
return id + ": " + "i4d =" + i4 + ", INT_5 = " + INT_5;
}

Reusing Classes 183

public static void main(String[] args) {
FinalData fdl = new FinalData("fdl");
//! fdl.valueOne++; // Error: can’t change value
fdl.v2.i++; // Object isn’t constant!
fdl.vl = new Value(9); // OK -- not final
for(int i = 0; i < fdl.a.length; i++)
fdl.a[i]++; // Object isn’t constant!
//V fdl.v2 = new Value(0); // Error: Can’t
//V fdl.VAL_3 = new Value(l); // change reference
//V fdl.a = new int[3];
print(fdl);
print("Creating new FinalData");
FinalData fd2 = new FinalData("fd2");
print(fdl);
print(fd2);
}
} /* Qutput:
fdl: i4 = 15, INT 5 = 18
Creating new FinalData

fdl: i4 = 15, INT_5 = 18
fd2: i4 = 13, INT_5 = 18
1]~

Since valueOne and VALUE_TWO are final primitives with compile-time values, they
can both be used as compile-time constants and are not different in any important way.
VALUE_THREE is the more typical way you’ll see such constants defined: public so
they’re usable outside the package, static to emphasize that there’s only one, and final to
say that it’s a constant. Note that final static primitives with constant initial values (that is,
compile-time constants) are named with all capitals by convention, with words separated by
underscores. (This is just like C constants, which is where the convention originated.)

Just because something is final doesn’t mean that its value is known at compile time. This is
demonstrated by initializing i4 and INT_5 at run time using randomly generated numbers.
This portion of the example also shows the difference between making a final value static or
non-static. This difference shows up only when the values are initialized at run time, since
the compile-time values are treated the same by the compiler. (And presumably optimized
out of existence.) The difference is shown when you run the program. Note that the values of
i4 for fd1 and fd2 are unique, but the value for INT_5 is not changed by creating the second
FinalData object. That’s because it’s static and is initialized once upon loading and not
each time a new object is created.

The variables v1 through VAL __3 demonstrate the meaning of a final reference. As you can
see in main(), just because v2 is final doesn’t mean that you can’t change its value.
Because it’s a reference, final means that you cannot rebind v2 to a new object. You can also
see that the same meaning holds true for an array, which is just another kind of reference.
(There is no way that I know of to make the array references themselves final.) Making
references final seems less useful than making primitives final.

Exercise 18: (2) Create a class with a static final field and a final field and
demonstrate the difference between the two.

Blank finals

Java allows the creation of blank finals, which are fields that are declared as final but are not
given an initialization value. In all cases, the blank final must be initialized before it is used,
and the compiler ensures this. However, blank finals provide much more flexibility in the use
of the final keyword since, for example, a final field inside a class can now be different for
each object, and yet it retains its immutable quality. Here’s an example:

Thinking in Java Bruce Eckel

//: reusing/BlankFinal.java
// "Blank" final fields.

class Poppet {

private int 1i;

Poppet(int ii) { i = ii; }
}

public class BlankFinal {
private final int i = 0; // Initialized final
private final int j; // Blank final
private final Poppet p; // Blank final reference
// Blank finals MUST be initialized in the constructor:
public BlankFinal() {
j 1; // Initialize blank final
p new Poppet(l); // Initialize blank final reference
}
public BlankFinal(int x) {
j x; // Initialize blank final
p new Poppet(x); // Initialize blank final reference
}
public static void main(String[] args) {
new BlankFinal();
new BlankFinal(47);
}
Yy /i~

You're forced to perform assignments to finals either with an expression at the point of
definition of the field or in every constructor. That way it’s guaranteed that the final field is
always initialized before use.

Exercise 19: (2) Create a class with a blank final reference to an object. Perform the
initialization of the blank final inside all constructors. Demonstrate the guarantee that the
final must be initialized before use, and that it cannot be changed once initialized.

final arguments

Java allows you to make arguments final by declaring them as such in the argument list.
This means that inside the method you cannot change what the argument reference points
to:

//: reusing/FinalArguments.java
// Using "final" with method arguments.

class Gizmo {
public void spin() {}
}

public class FinalArguments ({
void with(final Gizmo g) {
//' g = new Gizmo(); // Illegal -- g is final
}

void without(Gizmo g) {
g = new Gizmo(); // OK -- g not final
g.spin();

}

// void f(final int i) { i++; } // Can’t change

// You can only read from a final primitive:

int g(final int i) { return i + 1; }

public static void main(String[] args) {
FinalArguments bf = new FinalArguments();

Reusing Classes 185

bf.without(null);
bf.with(null);

}
Yy I/~

The methods f() and g() show what happens when primitive arguments are final: You can
read the argument, but you can’t change it. This feature is primarily used to pass data to
anonymous inner classes, which you’ll learn about in the Inner Classes chapter.

final methods

There are two reasons for final methods. The first is to put a “lock” on the method to prevent
any inheriting class from changing its meaning. This is done for design reasons when you
want to make sure that a method’s behavior is retained during inheritance and cannot be
overridden.

The second reason for final methods is efficiency. In earlier implementations of Java, if you
made a method final, you allowed the compiler to turn any calls to that method into inline
calls. When the compiler saw a final method call, it could (at its discretion) skip the normal
approach of inserting code to perform the method call mechanism (push arguments on the
stack, hop over to the method code and execute it, hop back and clean off the stack
arguments, and deal with the return value) and instead replace the method call with a copy of
the actual code in the method body. This eliminated the overhead of the method call. Of
course, if a method is big, then your code begins to bloat, and you probably wouldn’t see any
performance gains from inlining, since any improvements will be dwarfed by the amount of
time spent inside the method.

In more recent version of Java, the virtual machine (in particular, the hotspot technologies)
can detect these situations and optimize away the extra indirection, so its no longer
necessary-in fact, it is now generally discouraged-to use final to try to help the optimizer.
With Java SE5/6, you should let the compiler and JVM handle efficiency issues and make a
method final only if you want to explicitly prevent overriding. !

final and private

Any private methods in a class are implicitly final. Because you can’t access a private
method, you can’t override it. You can add the final specifier to a private method, but it
doesn’t give that method any extra meaning.

This issue can cause confusion, because if you try to override a private method (which is
implicitly final), it seems to work, and the compiler doesn’t give an error message:

//: reusing/FinalOverridinglllusion.java
// It only looks 1like you can override
// a private or private final method.
import static net.mindview.util.Print.*;

class WithFinals {
// Identical to "private" alone:
private final void f() { print("WithFinals.f()"); }
// Also automatically "final":
private void g() { print("WithFinals.g()"); }

}

1 Don’t fall prey to the urge to prematurely optimize. If you get your system working and it’s too slow, it’s doubtful that you
can fix it with the final keyword. http://MindView.net/Books/BetterJava has information about profiling, which can be
helpful in speeding up your program.

186 Think